File size: 5,243 Bytes
b37c16f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#include <cuda_fp16.h>

// IMPORTANT: replace __NSQ__ __B__ __D__ with actual values for kernel

typedef unsigned char uint8_t;

extern "C"
__global__ void quantize(
  const half* __restrict__ codebook,   // nsq x 2^b x d
  const half* __restrict__ vectors,    // n x (nsq * d)
  uint8_t* __restrict__ codes,         // nsq x n
  int n
) {
  extern __shared__ volatile half centroids[]; // 2^b x d

  const int sq_id = blockIdx.x;
  const int thread_id = threadIdx.x;
  const int n_threads = blockDim.x;

  const int n_floats_per_sq = (1 << __B__) * __D__;
#pragma unroll
  for (int i = thread_id; i < n_floats_per_sq; i += n_threads) {
    centroids[i] = codebook[sq_id * n_floats_per_sq + i];
  }
  __syncthreads();

  half subvector[__D__];
  for (int i = thread_id; i < n; i += n_threads) {
#pragma unroll
    for (int j = 0; j < __D__; ++j) {
        subvector[j] = vectors[(i * __NSQ__ + sq_id) * __D__ + j];
    }
    float min_dist = 1 << 16;
    uint8_t min_idx;
#pragma unroll
    for (int j = 0; j < (1 << __B__); ++j) {
        float dist = 0;
#pragma unroll
        for (int k = 0; k < __D__; ++k) {
            float tmp = __half2float(subvector[k]) - __half2float(centroids[j * __D__ + k]);
            dist += tmp * tmp;
        }
        min_dist = (dist <= min_dist) ? dist : min_dist;
        min_idx = (dist == min_dist) ? j : min_idx;
    }
    // printf("%d %d %d %d\n", sq_id, n, i, min_idx);
    codes[sq_id * n + i] = min_idx;
  }
}


// extern "C"
// __global__ void cq_encode(
//   const half* __restrict__ codebook,   // nsq x 2^b x d
//   const half* __restrict__ vectors,    // n x (nsq * d)
//   uint8_t* __restrict__ codes,          // nsq x n
//   int nsq, int b, int d, int n
// ) {
//   extern __shared__ volatile float centroids[]; // 2^b x d

//   const int sq_id = blockIdx.x;
//   const int thread_id = threadIdx.x;
//   const int n_threads = blockDim.x;

//   const int n_floats_per_sq = (1 << b) * d;
//   for (int i = thread_id; i < n_floats_per_sq; i += n_threads) {
//     centroids[i] = __half2float(codebook[sq_id * n_floats_per_sq + i]);
//   }
//   __syncthreads();

//   float subvector[MAX_DIM];
//   for (int i = thread_id; i < n; i += n_threads) {
//     for (int j = 0; j < d; ++j) {
//         subvector[j] = __half2float(vectors[(i * nsq + sq_id) * d + j]);
//         // subvector[j] = __half2float(vectors[sq_id * d + j]);
//     }
//     float min_dist = 16384;
//     uint8_t min_idx;
//     for (int j = 0; j < (1 << b); ++j) {
//         float dist = 0;
//         for (int k = 0; k < d; ++k) {
//             dist += (subvector[k] - centroids[j * d + k]) * (subvector[k] - centroids[j * d + k]);
//         }
//         min_dist = (dist <= min_dist) ? dist : min_dist;
//         min_idx = (dist == min_dist) ? j : min_idx;
//     }
//     // printf("%d %d %d %d\n", sq_id, n, i, min_idx);
//     codes[sq_id * n + i] = min_idx;
//   }
// }

// extern "C"
// __global__ void cq_encode(
//   const half* __restrict__ codebook,   // nsq x 2^b x d
//   const half* __restrict__ vectors,    // n x (nsq * d)
//   uint8_t* __restrict__ codes,          // nsq x n
//   int nsq, int b, int d, int n
// ) {
//   extern __shared__ volatile half centroids[]; // 2^b x d

//   const int sq_id = blockIdx.x;
//   const int thread_id = threadIdx.x;
//   const int n_threads = blockDim.x;

//   const int n_floats_per_sq = (1 << b) * d;
//   for (int i = thread_id; i < n_floats_per_sq; i += n_threads) {
//     centroids[i] = codebook[sq_id * n_floats_per_sq + i];
//   }
//   __syncthreads();

//   for (int i = thread_id; i < n; i += n_threads) {
//     half subvector[MAX_DIM];
//     for (int j = 0; j < d; ++j) {
//         subvector[j] = vectors[(i * nsq + sq_id) * d + j];
//     }
//     half min_dist = 16384;
//     int min_idx = -1;
//     for (int j = 0; j < (1 << b); ++j) {
//         half dist = 0;
//         for (int k = 0; k < d; ++k) {
//             dist += (subvector[k] - centroids[j * d + k]) * (subvector[k] - centroids[j * d + k]);
//         }
//         min_dist = (dist <= min_dist) ? dist : min_dist;
//         min_idx = (dist == min_dist) ? j : min_idx;
//     }
//     codes[sq_id * n + i] = min_idx;
//   }
// }

// extern "C"
// __global__ void cq_decode(
//   const float* __restrict__ codebook,   // nsq x 2^b x d
//   const uint8_t* __restrict__ codes,    // nsq x n
//   float* __restrict__ result,           // (nsq x d) x n
//   int nsq, int b, int d, int n
// ) {
//   extern __shared__ volatile float centroids[];

//   const int sq_id = blockIdx.x;
//   const int thread_id = threadIdx.x;
//   const int n_threads = blockDim.x;

//   const int n_floats_per_sq = (1 << b) * d;
//   for (int i = thread_id; i < n_floats_per_sq; i += n_threads) {
//     // printf("sq_id %d n_floats_per_sq %d i %d\n", sq_id, n_floats_per_sq, i);
//     centroids[i] = codebook[sq_id * n_floats_per_sq + i];
//     // printf("%d: %f\n", i, centroids[i]);
//   }
//   __syncthreads();

//   for (int i = thread_id; i < n; i += n_threads) {
//     uint8_t code = codes[sq_id * n + i];
//     for (int dim = 0; dim < d; ++dim) {
//       result[(sq_id * d + dim) * n + i] = centroids[d * code + dim];
//       // result[dim] = centroids[d * code + dim];
//     }
//   }
// }