xl2533 commited on
Commit
89ede82
·
1 Parent(s): 03b9994

global variable

Browse files
.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ data/*
2
+ ./idea
3
+ .DS_Store
4
+ */.DS_Store
5
+ .idea/
6
+ */__pycache__/*
7
+ */*/__pycache__/*
8
+ __pycache__/
app.py CHANGED
@@ -25,7 +25,7 @@ from langchain.chains.combine_documents.stuff import StuffDocumentsChain
25
  API_URL = "https://api.openai.com/v1/chat/completions"
26
  cohere_key = '5IRbILAbjTI0VcqTsktBfKsr13Lych9iBAFbLpkj'
27
  faiss_store = './output/'
28
- global doc_search
29
 
30
 
31
  def process(files, openai_api_key, max_tokens, n_sample):
@@ -64,8 +64,6 @@ def get_question(docs, openai_api_key, max_tokens, n_sample=5):
64
 
65
  def get_summary(docs, openai_api_key, max_tokens, n_sample=5, verbose=None):
66
  llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
67
- # chain = load_summarize_chain(llm, chain_type="map_reduce")
68
- # summary = chain.run(docs[:n_sample])
69
  print('Generating Summary from template')
70
  map_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
71
  combine_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
@@ -89,12 +87,13 @@ def get_summary(docs, openai_api_key, max_tokens, n_sample=5, verbose=None):
89
 
90
 
91
  def predict(inputs, openai_api_key, max_tokens, chat_counter, chatbot=[], history=[]):
 
92
  print(f"chat_counter - {chat_counter}")
93
  print(f'Histroy - {history}') # History: Original Input and Output in flatten list
94
  print(f'chatbot - {chatbot}') # Chat Bot: 上一轮回复的[[user, AI]]
95
 
96
  history.append(inputs)
97
- if doc_search is None:
98
  print(f'loading faiss store from {faiss_store}')
99
  docsearch = FAISS.load_local(faiss_store, OpenAIEmbeddings(openai_api_key=openai_api_key))
100
  else:
 
25
  API_URL = "https://api.openai.com/v1/chat/completions"
26
  cohere_key = '5IRbILAbjTI0VcqTsktBfKsr13Lych9iBAFbLpkj'
27
  faiss_store = './output/'
28
+ docsearch = None
29
 
30
 
31
  def process(files, openai_api_key, max_tokens, n_sample):
 
64
 
65
  def get_summary(docs, openai_api_key, max_tokens, n_sample=5, verbose=None):
66
  llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
 
 
67
  print('Generating Summary from template')
68
  map_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
69
  combine_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
 
87
 
88
 
89
  def predict(inputs, openai_api_key, max_tokens, chat_counter, chatbot=[], history=[]):
90
+ global docsearch
91
  print(f"chat_counter - {chat_counter}")
92
  print(f'Histroy - {history}') # History: Original Input and Output in flatten list
93
  print(f'chatbot - {chatbot}') # Chat Bot: 上一轮回复的[[user, AI]]
94
 
95
  history.append(inputs)
96
+ if docsearch is None:
97
  print(f'loading faiss store from {faiss_store}')
98
  docsearch = FAISS.load_local(faiss_store, OpenAIEmbeddings(openai_api_key=openai_api_key))
99
  else:
prompts/qa_sys_prompt.txt CHANGED
@@ -1,5 +1,5 @@
1
  You are a smart assistant designed to help high school teachers come up with reading comprehension questions.
2
- Given a piece of text, you must come up with a question and answer in finance area, relevant to economy, politic, finance market, corporate finance, etc.
3
  When coming up with this question/answer pair, you must respond in the following format, and always respond in chinese:
4
  ```
5
  {{
 
1
  You are a smart assistant designed to help high school teachers come up with reading comprehension questions.
2
+ Given a piece of text, you must come up with a question and answer in finance-related area, including but not limited to economics, politics, financial markets, corporate finance, etc.
3
  When coming up with this question/answer pair, you must respond in the following format, and always respond in chinese:
4
  ```
5
  {{
prompts/summary_prompt.txt CHANGED
@@ -1,4 +1,4 @@
1
- Write a concise summary of the following in chinese, ignore the content in footnote, appendix or sidebar:
2
 
3
 
4
  "{text}"
 
1
+ Write a concise summary of the following in chinese:
2
 
3
 
4
  "{text}"