alter prompt
Browse files- app.py +11 -14
- prompts/qa_sys_prompt.txt +1 -1
- prompts/summary_prompt.txt +1 -1
app.py
CHANGED
@@ -25,6 +25,7 @@ from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
|
25 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
26 |
cohere_key = '5IRbILAbjTI0VcqTsktBfKsr13Lych9iBAFbLpkj'
|
27 |
faiss_store = './output/'
|
|
|
28 |
|
29 |
|
30 |
def process(files, openai_api_key, max_tokens, model, n_sample):
|
@@ -66,8 +67,7 @@ def get_summary(docs, openai_api_key, max_tokens, n_sample=5, verbose=None):
|
|
66 |
llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
|
67 |
# chain = load_summarize_chain(llm, chain_type="map_reduce")
|
68 |
# summary = chain.run(docs[:n_sample])
|
69 |
-
print('Generating Summary from
|
70 |
-
|
71 |
map_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
|
72 |
combine_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
|
73 |
map_chain = LLMChain(llm=llm, prompt=map_prompt, verbose=verbose)
|
@@ -89,18 +89,17 @@ def get_summary(docs, openai_api_key, max_tokens, n_sample=5, verbose=None):
|
|
89 |
return summary
|
90 |
|
91 |
|
92 |
-
def predict(inputs, openai_api_key, max_tokens,
|
93 |
-
model = model[0]
|
94 |
print(f"chat_counter - {chat_counter}")
|
95 |
print(f'Histroy - {history}') # History: Original Input and Output in flatten list
|
96 |
print(f'chatbot - {chatbot}') # Chat Bot: 上一轮回复的[[user, AI]]
|
97 |
|
98 |
history.append(inputs)
|
99 |
-
|
100 |
-
|
101 |
docsearch = FAISS.load_local(faiss_store, OpenAIEmbeddings(openai_api_key=openai_api_key))
|
102 |
else:
|
103 |
-
|
104 |
# 构建模板
|
105 |
llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
|
106 |
messages_combine = [
|
@@ -134,7 +133,7 @@ def reset_textbox():
|
|
134 |
|
135 |
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
136 |
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
137 |
-
gr.HTML("""<h1 align="center">🚀
|
138 |
with gr.Column(elem_id="col_container"):
|
139 |
openai_api_key = gr.Textbox(type='password', label="输入 API Key")
|
140 |
|
@@ -142,7 +141,6 @@ with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-r
|
|
142 |
with gr.Row():
|
143 |
max_tokens = gr.Slider(minimum=100, maximum=2000, value=1000, step=100, interactive=True,
|
144 |
label="字数")
|
145 |
-
model = gr.CheckboxGroup(["cohere", "openai"])
|
146 |
chat_counter = gr.Number(value=0, precision=0, label='对话轮数')
|
147 |
n_sample = gr.Slider(minimum=3, maximum=5, value=3, step=1, interactive=True,
|
148 |
label="问题数")
|
@@ -151,7 +149,7 @@ with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-r
|
|
151 |
with gr.Row():
|
152 |
with gr.Column():
|
153 |
files = gr.File(file_count="multiple", file_types=[".pdf"], label='上传pdf文件')
|
154 |
-
run = gr.Button('
|
155 |
|
156 |
with gr.Column():
|
157 |
summary = gr.Textbox(type='text', label="一眼看尽 - 文档概览")
|
@@ -165,16 +163,15 @@ with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-r
|
|
165 |
clear = gr.Button("清空")
|
166 |
start = gr.Button("提问")
|
167 |
|
168 |
-
run.click(process, [files, openai_api_key, max_tokens,
|
169 |
inputs.submit(predict,
|
170 |
-
[inputs, openai_api_key, max_tokens,
|
171 |
[chatbot, state, chat_counter], )
|
172 |
start.click(predict,
|
173 |
-
[inputs, openai_api_key, max_tokens,
|
174 |
[chatbot, state, chat_counter], )
|
175 |
|
176 |
# 每次对话结束都重置对话
|
177 |
clear.click(reset_textbox, [], [inputs], queue=False)
|
178 |
inputs.submit(reset_textbox, [], [inputs])
|
179 |
-
|
180 |
demo.queue().launch(debug=True)
|
|
|
25 |
API_URL = "https://api.openai.com/v1/chat/completions"
|
26 |
cohere_key = '5IRbILAbjTI0VcqTsktBfKsr13Lych9iBAFbLpkj'
|
27 |
faiss_store = './output/'
|
28 |
+
global doc_search
|
29 |
|
30 |
|
31 |
def process(files, openai_api_key, max_tokens, model, n_sample):
|
|
|
67 |
llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
|
68 |
# chain = load_summarize_chain(llm, chain_type="map_reduce")
|
69 |
# summary = chain.run(docs[:n_sample])
|
70 |
+
print('Generating Summary from template')
|
|
|
71 |
map_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
|
72 |
combine_prompt = PromptTemplate(template=MyTemplate['summary_template'], input_variables=["text"])
|
73 |
map_chain = LLMChain(llm=llm, prompt=map_prompt, verbose=verbose)
|
|
|
89 |
return summary
|
90 |
|
91 |
|
92 |
+
def predict(inputs, openai_api_key, max_tokens, chat_counter, chatbot=[], history=[]):
|
|
|
93 |
print(f"chat_counter - {chat_counter}")
|
94 |
print(f'Histroy - {history}') # History: Original Input and Output in flatten list
|
95 |
print(f'chatbot - {chatbot}') # Chat Bot: 上一轮回复的[[user, AI]]
|
96 |
|
97 |
history.append(inputs)
|
98 |
+
if doc_search is None:
|
99 |
+
print(f'loading faiss store from {faiss_store}')
|
100 |
docsearch = FAISS.load_local(faiss_store, OpenAIEmbeddings(openai_api_key=openai_api_key))
|
101 |
else:
|
102 |
+
print('faiss already loaded')
|
103 |
# 构建模板
|
104 |
llm = ChatOpenAI(openai_api_key=openai_api_key, max_tokens=max_tokens)
|
105 |
messages_combine = [
|
|
|
133 |
|
134 |
with gr.Blocks(css="""#col_container {width: 1000px; margin-left: auto; margin-right: auto;}
|
135 |
#chatbot {height: 520px; overflow: auto;}""") as demo:
|
136 |
+
gr.HTML("""<h1 align="center">🚀Smart Doc Reader🚀</h1>""")
|
137 |
with gr.Column(elem_id="col_container"):
|
138 |
openai_api_key = gr.Textbox(type='password', label="输入 API Key")
|
139 |
|
|
|
141 |
with gr.Row():
|
142 |
max_tokens = gr.Slider(minimum=100, maximum=2000, value=1000, step=100, interactive=True,
|
143 |
label="字数")
|
|
|
144 |
chat_counter = gr.Number(value=0, precision=0, label='对话轮数')
|
145 |
n_sample = gr.Slider(minimum=3, maximum=5, value=3, step=1, interactive=True,
|
146 |
label="问题数")
|
|
|
149 |
with gr.Row():
|
150 |
with gr.Column():
|
151 |
files = gr.File(file_count="multiple", file_types=[".pdf"], label='上传pdf文件')
|
152 |
+
run = gr.Button('文档内容解读')
|
153 |
|
154 |
with gr.Column():
|
155 |
summary = gr.Textbox(type='text', label="一眼看尽 - 文档概览")
|
|
|
163 |
clear = gr.Button("清空")
|
164 |
start = gr.Button("提问")
|
165 |
|
166 |
+
run.click(process, [files, openai_api_key, max_tokens, n_sample], [question, summary])
|
167 |
inputs.submit(predict,
|
168 |
+
[inputs, openai_api_key, max_tokens, chat_counter, chatbot, state],
|
169 |
[chatbot, state, chat_counter], )
|
170 |
start.click(predict,
|
171 |
+
[inputs, openai_api_key, max_tokens, chat_counter, chatbot, state],
|
172 |
[chatbot, state, chat_counter], )
|
173 |
|
174 |
# 每次对话结束都重置对话
|
175 |
clear.click(reset_textbox, [], [inputs], queue=False)
|
176 |
inputs.submit(reset_textbox, [], [inputs])
|
|
|
177 |
demo.queue().launch(debug=True)
|
prompts/qa_sys_prompt.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
You are a smart assistant designed to help high school teachers come up with reading comprehension questions.
|
2 |
-
Given a piece of text, you must come up with a question and answer pair that can be used to test a student's reading comprehension abilities.
|
3 |
When coming up with this question/answer pair, you must respond in the following format, and always respond in chinese:
|
4 |
```
|
5 |
{{
|
|
|
1 |
You are a smart assistant designed to help high school teachers come up with reading comprehension questions.
|
2 |
+
Given a piece of text, you must come up with a question and answer pair irrelevant to picture, relevant to the core concept of the text, that can be used to test a student's reading comprehension abilities.
|
3 |
When coming up with this question/answer pair, you must respond in the following format, and always respond in chinese:
|
4 |
```
|
5 |
{{
|
prompts/summary_prompt.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
Write a concise summary of the following in chinese:
|
2 |
|
3 |
|
4 |
"{text}"
|
|
|
1 |
+
Write a concise summary of the following in chinese, ignore the content in footnote, appendix or sidebar:
|
2 |
|
3 |
|
4 |
"{text}"
|