Spaces:
Running
Running
import concurrent.futures | |
import datetime | |
import json | |
import logging | |
import re | |
import threading | |
import time | |
import uuid | |
from typing import Optional, cast | |
from flask import Flask, current_app | |
from flask_login import current_user | |
from sqlalchemy.orm.exc import ObjectDeletedError | |
from core.docstore.dataset_docstore import DatasetDocumentStore | |
from core.errors.error import ProviderTokenNotInitError | |
from core.llm_generator.llm_generator import LLMGenerator | |
from core.model_manager import ModelInstance, ModelManager | |
from core.model_runtime.entities.model_entities import ModelType, PriceType | |
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel | |
from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel | |
from core.rag.datasource.keyword.keyword_factory import Keyword | |
from core.rag.extractor.entity.extract_setting import ExtractSetting | |
from core.rag.index_processor.index_processor_base import BaseIndexProcessor | |
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory | |
from core.rag.models.document import Document | |
from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter | |
from core.splitter.text_splitter import TextSplitter | |
from extensions.ext_database import db | |
from extensions.ext_redis import redis_client | |
from extensions.ext_storage import storage | |
from libs import helper | |
from models.dataset import Dataset, DatasetProcessRule, DocumentSegment | |
from models.dataset import Document as DatasetDocument | |
from models.model import UploadFile | |
from services.feature_service import FeatureService | |
class IndexingRunner: | |
def __init__(self): | |
self.storage = storage | |
self.model_manager = ModelManager() | |
def run(self, dataset_documents: list[DatasetDocument]): | |
"""Run the indexing process.""" | |
for dataset_document in dataset_documents: | |
try: | |
# get dataset | |
dataset = Dataset.query.filter_by( | |
id=dataset_document.dataset_id | |
).first() | |
if not dataset: | |
raise ValueError("no dataset found") | |
# get the process rule | |
processing_rule = db.session.query(DatasetProcessRule). \ | |
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \ | |
first() | |
index_type = dataset_document.doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
# extract | |
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict()) | |
# transform | |
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language, | |
processing_rule.to_dict()) | |
# save segment | |
self._load_segments(dataset, dataset_document, documents) | |
# load | |
self._load( | |
index_processor=index_processor, | |
dataset=dataset, | |
dataset_document=dataset_document, | |
documents=documents | |
) | |
except DocumentIsPausedException: | |
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) | |
except ProviderTokenNotInitError as e: | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e.description) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
except ObjectDeletedError: | |
logging.warning('Document deleted, document id: {}'.format(dataset_document.id)) | |
except Exception as e: | |
logging.exception("consume document failed") | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
def run_in_splitting_status(self, dataset_document: DatasetDocument): | |
"""Run the indexing process when the index_status is splitting.""" | |
try: | |
# get dataset | |
dataset = Dataset.query.filter_by( | |
id=dataset_document.dataset_id | |
).first() | |
if not dataset: | |
raise ValueError("no dataset found") | |
# get exist document_segment list and delete | |
document_segments = DocumentSegment.query.filter_by( | |
dataset_id=dataset.id, | |
document_id=dataset_document.id | |
).all() | |
for document_segment in document_segments: | |
db.session.delete(document_segment) | |
db.session.commit() | |
# get the process rule | |
processing_rule = db.session.query(DatasetProcessRule). \ | |
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \ | |
first() | |
index_type = dataset_document.doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
# extract | |
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict()) | |
# transform | |
documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language, | |
processing_rule.to_dict()) | |
# save segment | |
self._load_segments(dataset, dataset_document, documents) | |
# load | |
self._load( | |
index_processor=index_processor, | |
dataset=dataset, | |
dataset_document=dataset_document, | |
documents=documents | |
) | |
except DocumentIsPausedException: | |
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) | |
except ProviderTokenNotInitError as e: | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e.description) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
except Exception as e: | |
logging.exception("consume document failed") | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
def run_in_indexing_status(self, dataset_document: DatasetDocument): | |
"""Run the indexing process when the index_status is indexing.""" | |
try: | |
# get dataset | |
dataset = Dataset.query.filter_by( | |
id=dataset_document.dataset_id | |
).first() | |
if not dataset: | |
raise ValueError("no dataset found") | |
# get exist document_segment list and delete | |
document_segments = DocumentSegment.query.filter_by( | |
dataset_id=dataset.id, | |
document_id=dataset_document.id | |
).all() | |
documents = [] | |
if document_segments: | |
for document_segment in document_segments: | |
# transform segment to node | |
if document_segment.status != "completed": | |
document = Document( | |
page_content=document_segment.content, | |
metadata={ | |
"doc_id": document_segment.index_node_id, | |
"doc_hash": document_segment.index_node_hash, | |
"document_id": document_segment.document_id, | |
"dataset_id": document_segment.dataset_id, | |
} | |
) | |
documents.append(document) | |
# build index | |
# get the process rule | |
processing_rule = db.session.query(DatasetProcessRule). \ | |
filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \ | |
first() | |
index_type = dataset_document.doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
self._load( | |
index_processor=index_processor, | |
dataset=dataset, | |
dataset_document=dataset_document, | |
documents=documents | |
) | |
except DocumentIsPausedException: | |
raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id)) | |
except ProviderTokenNotInitError as e: | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e.description) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
except Exception as e: | |
logging.exception("consume document failed") | |
dataset_document.indexing_status = 'error' | |
dataset_document.error = str(e) | |
dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
db.session.commit() | |
def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict, | |
doc_form: str = None, doc_language: str = 'English', dataset_id: str = None, | |
indexing_technique: str = 'economy') -> dict: | |
""" | |
Estimate the indexing for the document. | |
""" | |
# check document limit | |
features = FeatureService.get_features(tenant_id) | |
if features.billing.enabled: | |
count = len(extract_settings) | |
batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT']) | |
if count > batch_upload_limit: | |
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.") | |
embedding_model_instance = None | |
if dataset_id: | |
dataset = Dataset.query.filter_by( | |
id=dataset_id | |
).first() | |
if not dataset: | |
raise ValueError('Dataset not found.') | |
if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality': | |
if dataset.embedding_model_provider: | |
embedding_model_instance = self.model_manager.get_model_instance( | |
tenant_id=tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
else: | |
embedding_model_instance = self.model_manager.get_default_model_instance( | |
tenant_id=tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING, | |
) | |
else: | |
if indexing_technique == 'high_quality': | |
embedding_model_instance = self.model_manager.get_default_model_instance( | |
tenant_id=tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING, | |
) | |
tokens = 0 | |
preview_texts = [] | |
total_segments = 0 | |
total_price = 0 | |
currency = 'USD' | |
index_type = doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
all_text_docs = [] | |
for extract_setting in extract_settings: | |
# extract | |
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"]) | |
all_text_docs.extend(text_docs) | |
processing_rule = DatasetProcessRule( | |
mode=tmp_processing_rule["mode"], | |
rules=json.dumps(tmp_processing_rule["rules"]) | |
) | |
# get splitter | |
splitter = self._get_splitter(processing_rule, embedding_model_instance) | |
# split to documents | |
documents = self._split_to_documents_for_estimate( | |
text_docs=text_docs, | |
splitter=splitter, | |
processing_rule=processing_rule | |
) | |
total_segments += len(documents) | |
for document in documents: | |
if len(preview_texts) < 5: | |
preview_texts.append(document.page_content) | |
if indexing_technique == 'high_quality' or embedding_model_instance: | |
embedding_model_type_instance = embedding_model_instance.model_type_instance | |
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance) | |
tokens += embedding_model_type_instance.get_num_tokens( | |
model=embedding_model_instance.model, | |
credentials=embedding_model_instance.credentials, | |
texts=[self.filter_string(document.page_content)] | |
) | |
if doc_form and doc_form == 'qa_model': | |
model_instance = self.model_manager.get_default_model_instance( | |
tenant_id=tenant_id, | |
model_type=ModelType.LLM | |
) | |
model_type_instance = model_instance.model_type_instance | |
model_type_instance = cast(LargeLanguageModel, model_type_instance) | |
if len(preview_texts) > 0: | |
# qa model document | |
response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], | |
doc_language) | |
document_qa_list = self.format_split_text(response) | |
price_info = model_type_instance.get_price( | |
model=model_instance.model, | |
credentials=model_instance.credentials, | |
price_type=PriceType.INPUT, | |
tokens=total_segments * 2000, | |
) | |
return { | |
"total_segments": total_segments * 20, | |
"tokens": total_segments * 2000, | |
"total_price": '{:f}'.format(price_info.total_amount), | |
"currency": price_info.currency, | |
"qa_preview": document_qa_list, | |
"preview": preview_texts | |
} | |
if embedding_model_instance: | |
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance) | |
embedding_price_info = embedding_model_type_instance.get_price( | |
model=embedding_model_instance.model, | |
credentials=embedding_model_instance.credentials, | |
price_type=PriceType.INPUT, | |
tokens=tokens | |
) | |
total_price = '{:f}'.format(embedding_price_info.total_amount) | |
currency = embedding_price_info.currency | |
return { | |
"total_segments": total_segments, | |
"tokens": tokens, | |
"total_price": total_price, | |
"currency": currency, | |
"preview": preview_texts | |
} | |
def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \ | |
-> list[Document]: | |
# load file | |
if dataset_document.data_source_type not in ["upload_file", "notion_import"]: | |
return [] | |
data_source_info = dataset_document.data_source_info_dict | |
text_docs = [] | |
if dataset_document.data_source_type == 'upload_file': | |
if not data_source_info or 'upload_file_id' not in data_source_info: | |
raise ValueError("no upload file found") | |
file_detail = db.session.query(UploadFile). \ | |
filter(UploadFile.id == data_source_info['upload_file_id']). \ | |
one_or_none() | |
if file_detail: | |
extract_setting = ExtractSetting( | |
datasource_type="upload_file", | |
upload_file=file_detail, | |
document_model=dataset_document.doc_form | |
) | |
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode']) | |
elif dataset_document.data_source_type == 'notion_import': | |
if (not data_source_info or 'notion_workspace_id' not in data_source_info | |
or 'notion_page_id' not in data_source_info): | |
raise ValueError("no notion import info found") | |
extract_setting = ExtractSetting( | |
datasource_type="notion_import", | |
notion_info={ | |
"notion_workspace_id": data_source_info['notion_workspace_id'], | |
"notion_obj_id": data_source_info['notion_page_id'], | |
"notion_page_type": data_source_info['type'], | |
"document": dataset_document, | |
"tenant_id": dataset_document.tenant_id | |
}, | |
document_model=dataset_document.doc_form | |
) | |
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode']) | |
# update document status to splitting | |
self._update_document_index_status( | |
document_id=dataset_document.id, | |
after_indexing_status="splitting", | |
extra_update_params={ | |
DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]), | |
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
} | |
) | |
# replace doc id to document model id | |
text_docs = cast(list[Document], text_docs) | |
for text_doc in text_docs: | |
text_doc.metadata['document_id'] = dataset_document.id | |
text_doc.metadata['dataset_id'] = dataset_document.dataset_id | |
return text_docs | |
def filter_string(self, text): | |
text = re.sub(r'<\|', '<', text) | |
text = re.sub(r'\|>', '>', text) | |
text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text) | |
# Unicode U+FFFE | |
text = re.sub('\uFFFE', '', text) | |
return text | |
def _get_splitter(self, processing_rule: DatasetProcessRule, | |
embedding_model_instance: Optional[ModelInstance]) -> TextSplitter: | |
""" | |
Get the NodeParser object according to the processing rule. | |
""" | |
if processing_rule.mode == "custom": | |
# The user-defined segmentation rule | |
rules = json.loads(processing_rule.rules) | |
segmentation = rules["segmentation"] | |
max_segmentation_tokens_length = int(current_app.config['INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH']) | |
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > max_segmentation_tokens_length: | |
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.") | |
separator = segmentation["separator"] | |
if separator: | |
separator = separator.replace('\\n', '\n') | |
if segmentation.get('chunk_overlap'): | |
chunk_overlap = segmentation['chunk_overlap'] | |
else: | |
chunk_overlap = 0 | |
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder( | |
chunk_size=segmentation["max_tokens"], | |
chunk_overlap=chunk_overlap, | |
fixed_separator=separator, | |
separators=["\n\n", "。", ".", " ", ""], | |
embedding_model_instance=embedding_model_instance | |
) | |
else: | |
# Automatic segmentation | |
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder( | |
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'], | |
chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'], | |
separators=["\n\n", "。", ".", " ", ""], | |
embedding_model_instance=embedding_model_instance | |
) | |
return character_splitter | |
def _step_split(self, text_docs: list[Document], splitter: TextSplitter, | |
dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \ | |
-> list[Document]: | |
""" | |
Split the text documents into documents and save them to the document segment. | |
""" | |
documents = self._split_to_documents( | |
text_docs=text_docs, | |
splitter=splitter, | |
processing_rule=processing_rule, | |
tenant_id=dataset.tenant_id, | |
document_form=dataset_document.doc_form, | |
document_language=dataset_document.doc_language | |
) | |
# save node to document segment | |
doc_store = DatasetDocumentStore( | |
dataset=dataset, | |
user_id=dataset_document.created_by, | |
document_id=dataset_document.id | |
) | |
# add document segments | |
doc_store.add_documents(documents) | |
# update document status to indexing | |
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
self._update_document_index_status( | |
document_id=dataset_document.id, | |
after_indexing_status="indexing", | |
extra_update_params={ | |
DatasetDocument.cleaning_completed_at: cur_time, | |
DatasetDocument.splitting_completed_at: cur_time, | |
} | |
) | |
# update segment status to indexing | |
self._update_segments_by_document( | |
dataset_document_id=dataset_document.id, | |
update_params={ | |
DocumentSegment.status: "indexing", | |
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
} | |
) | |
return documents | |
def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter, | |
processing_rule: DatasetProcessRule, tenant_id: str, | |
document_form: str, document_language: str) -> list[Document]: | |
""" | |
Split the text documents into nodes. | |
""" | |
all_documents = [] | |
all_qa_documents = [] | |
for text_doc in text_docs: | |
# document clean | |
document_text = self._document_clean(text_doc.page_content, processing_rule) | |
text_doc.page_content = document_text | |
# parse document to nodes | |
documents = splitter.split_documents([text_doc]) | |
split_documents = [] | |
for document_node in documents: | |
if document_node.page_content.strip(): | |
doc_id = str(uuid.uuid4()) | |
hash = helper.generate_text_hash(document_node.page_content) | |
document_node.metadata['doc_id'] = doc_id | |
document_node.metadata['doc_hash'] = hash | |
# delete Spliter character | |
page_content = document_node.page_content | |
if page_content.startswith(".") or page_content.startswith("。"): | |
page_content = page_content[1:] | |
else: | |
page_content = page_content | |
document_node.page_content = page_content | |
if document_node.page_content: | |
split_documents.append(document_node) | |
all_documents.extend(split_documents) | |
# processing qa document | |
if document_form == 'qa_model': | |
for i in range(0, len(all_documents), 10): | |
threads = [] | |
sub_documents = all_documents[i:i + 10] | |
for doc in sub_documents: | |
document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={ | |
'flask_app': current_app._get_current_object(), | |
'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents, | |
'document_language': document_language}) | |
threads.append(document_format_thread) | |
document_format_thread.start() | |
for thread in threads: | |
thread.join() | |
return all_qa_documents | |
return all_documents | |
def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language): | |
format_documents = [] | |
if document_node.page_content is None or not document_node.page_content.strip(): | |
return | |
with flask_app.app_context(): | |
try: | |
# qa model document | |
response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language) | |
document_qa_list = self.format_split_text(response) | |
qa_documents = [] | |
for result in document_qa_list: | |
qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy()) | |
doc_id = str(uuid.uuid4()) | |
hash = helper.generate_text_hash(result['question']) | |
qa_document.metadata['answer'] = result['answer'] | |
qa_document.metadata['doc_id'] = doc_id | |
qa_document.metadata['doc_hash'] = hash | |
qa_documents.append(qa_document) | |
format_documents.extend(qa_documents) | |
except Exception as e: | |
logging.exception(e) | |
all_qa_documents.extend(format_documents) | |
def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter, | |
processing_rule: DatasetProcessRule) -> list[Document]: | |
""" | |
Split the text documents into nodes. | |
""" | |
all_documents = [] | |
for text_doc in text_docs: | |
# document clean | |
document_text = self._document_clean(text_doc.page_content, processing_rule) | |
text_doc.page_content = document_text | |
# parse document to nodes | |
documents = splitter.split_documents([text_doc]) | |
split_documents = [] | |
for document in documents: | |
if document.page_content is None or not document.page_content.strip(): | |
continue | |
doc_id = str(uuid.uuid4()) | |
hash = helper.generate_text_hash(document.page_content) | |
document.metadata['doc_id'] = doc_id | |
document.metadata['doc_hash'] = hash | |
split_documents.append(document) | |
all_documents.extend(split_documents) | |
return all_documents | |
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str: | |
""" | |
Clean the document text according to the processing rules. | |
""" | |
if processing_rule.mode == "automatic": | |
rules = DatasetProcessRule.AUTOMATIC_RULES | |
else: | |
rules = json.loads(processing_rule.rules) if processing_rule.rules else {} | |
if 'pre_processing_rules' in rules: | |
pre_processing_rules = rules["pre_processing_rules"] | |
for pre_processing_rule in pre_processing_rules: | |
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True: | |
# Remove extra spaces | |
pattern = r'\n{3,}' | |
text = re.sub(pattern, '\n\n', text) | |
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}' | |
text = re.sub(pattern, ' ', text) | |
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True: | |
# Remove email | |
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)' | |
text = re.sub(pattern, '', text) | |
# Remove URL | |
pattern = r'https?://[^\s]+' | |
text = re.sub(pattern, '', text) | |
return text | |
def format_split_text(self, text): | |
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)" | |
matches = re.findall(regex, text, re.UNICODE) | |
return [ | |
{ | |
"question": q, | |
"answer": re.sub(r"\n\s*", "\n", a.strip()) | |
} | |
for q, a in matches if q and a | |
] | |
def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset, | |
dataset_document: DatasetDocument, documents: list[Document]) -> None: | |
""" | |
insert index and update document/segment status to completed | |
""" | |
embedding_model_instance = None | |
if dataset.indexing_technique == 'high_quality': | |
embedding_model_instance = self.model_manager.get_model_instance( | |
tenant_id=dataset.tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
# chunk nodes by chunk size | |
indexing_start_at = time.perf_counter() | |
tokens = 0 | |
chunk_size = 10 | |
embedding_model_type_instance = None | |
if embedding_model_instance: | |
embedding_model_type_instance = embedding_model_instance.model_type_instance | |
embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance) | |
# create keyword index | |
create_keyword_thread = threading.Thread(target=self._process_keyword_index, | |
args=(current_app._get_current_object(), | |
dataset.id, dataset_document.id, documents)) | |
create_keyword_thread.start() | |
if dataset.indexing_technique == 'high_quality': | |
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor: | |
futures = [] | |
for i in range(0, len(documents), chunk_size): | |
chunk_documents = documents[i:i + chunk_size] | |
futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor, | |
chunk_documents, dataset, | |
dataset_document, embedding_model_instance, | |
embedding_model_type_instance)) | |
for future in futures: | |
tokens += future.result() | |
create_keyword_thread.join() | |
indexing_end_at = time.perf_counter() | |
# update document status to completed | |
self._update_document_index_status( | |
document_id=dataset_document.id, | |
after_indexing_status="completed", | |
extra_update_params={ | |
DatasetDocument.tokens: tokens, | |
DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None), | |
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at, | |
} | |
) | |
def _process_keyword_index(self, flask_app, dataset_id, document_id, documents): | |
with flask_app.app_context(): | |
dataset = Dataset.query.filter_by(id=dataset_id).first() | |
if not dataset: | |
raise ValueError("no dataset found") | |
keyword = Keyword(dataset) | |
keyword.create(documents) | |
if dataset.indexing_technique != 'high_quality': | |
document_ids = [document.metadata['doc_id'] for document in documents] | |
db.session.query(DocumentSegment).filter( | |
DocumentSegment.document_id == document_id, | |
DocumentSegment.index_node_id.in_(document_ids), | |
DocumentSegment.status == "indexing" | |
).update({ | |
DocumentSegment.status: "completed", | |
DocumentSegment.enabled: True, | |
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
}) | |
db.session.commit() | |
def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document, | |
embedding_model_instance, embedding_model_type_instance): | |
with flask_app.app_context(): | |
# check document is paused | |
self._check_document_paused_status(dataset_document.id) | |
tokens = 0 | |
if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance: | |
tokens += sum( | |
embedding_model_type_instance.get_num_tokens( | |
embedding_model_instance.model, | |
embedding_model_instance.credentials, | |
[document.page_content] | |
) | |
for document in chunk_documents | |
) | |
# load index | |
index_processor.load(dataset, chunk_documents, with_keywords=False) | |
document_ids = [document.metadata['doc_id'] for document in chunk_documents] | |
db.session.query(DocumentSegment).filter( | |
DocumentSegment.document_id == dataset_document.id, | |
DocumentSegment.index_node_id.in_(document_ids), | |
DocumentSegment.status == "indexing" | |
).update({ | |
DocumentSegment.status: "completed", | |
DocumentSegment.enabled: True, | |
DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
}) | |
db.session.commit() | |
return tokens | |
def _check_document_paused_status(self, document_id: str): | |
indexing_cache_key = 'document_{}_is_paused'.format(document_id) | |
result = redis_client.get(indexing_cache_key) | |
if result: | |
raise DocumentIsPausedException() | |
def _update_document_index_status(self, document_id: str, after_indexing_status: str, | |
extra_update_params: Optional[dict] = None) -> None: | |
""" | |
Update the document indexing status. | |
""" | |
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count() | |
if count > 0: | |
raise DocumentIsPausedException() | |
document = DatasetDocument.query.filter_by(id=document_id).first() | |
if not document: | |
raise DocumentIsDeletedPausedException() | |
update_params = { | |
DatasetDocument.indexing_status: after_indexing_status | |
} | |
if extra_update_params: | |
update_params.update(extra_update_params) | |
DatasetDocument.query.filter_by(id=document_id).update(update_params) | |
db.session.commit() | |
def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None: | |
""" | |
Update the document segment by document id. | |
""" | |
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params) | |
db.session.commit() | |
def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset): | |
""" | |
Batch add segments index processing | |
""" | |
documents = [] | |
for segment in segments: | |
document = Document( | |
page_content=segment.content, | |
metadata={ | |
"doc_id": segment.index_node_id, | |
"doc_hash": segment.index_node_hash, | |
"document_id": segment.document_id, | |
"dataset_id": segment.dataset_id, | |
} | |
) | |
documents.append(document) | |
# save vector index | |
index_type = dataset.doc_form | |
index_processor = IndexProcessorFactory(index_type).init_index_processor() | |
index_processor.load(dataset, documents) | |
def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset, | |
text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]: | |
# get embedding model instance | |
embedding_model_instance = None | |
if dataset.indexing_technique == 'high_quality': | |
if dataset.embedding_model_provider: | |
embedding_model_instance = self.model_manager.get_model_instance( | |
tenant_id=dataset.tenant_id, | |
provider=dataset.embedding_model_provider, | |
model_type=ModelType.TEXT_EMBEDDING, | |
model=dataset.embedding_model | |
) | |
else: | |
embedding_model_instance = self.model_manager.get_default_model_instance( | |
tenant_id=dataset.tenant_id, | |
model_type=ModelType.TEXT_EMBEDDING, | |
) | |
documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance, | |
process_rule=process_rule, tenant_id=dataset.tenant_id, | |
doc_language=doc_language) | |
return documents | |
def _load_segments(self, dataset, dataset_document, documents): | |
# save node to document segment | |
doc_store = DatasetDocumentStore( | |
dataset=dataset, | |
user_id=dataset_document.created_by, | |
document_id=dataset_document.id | |
) | |
# add document segments | |
doc_store.add_documents(documents) | |
# update document status to indexing | |
cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
self._update_document_index_status( | |
document_id=dataset_document.id, | |
after_indexing_status="indexing", | |
extra_update_params={ | |
DatasetDocument.cleaning_completed_at: cur_time, | |
DatasetDocument.splitting_completed_at: cur_time, | |
} | |
) | |
# update segment status to indexing | |
self._update_segments_by_document( | |
dataset_document_id=dataset_document.id, | |
update_params={ | |
DocumentSegment.status: "indexing", | |
DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None) | |
} | |
) | |
pass | |
class DocumentIsPausedException(Exception): | |
pass | |
class DocumentIsDeletedPausedException(Exception): | |
pass | |