Spaces:
Running
Running
import json | |
from abc import ABC, abstractmethod | |
from collections.abc import Generator | |
from typing import Union | |
from core.agent.base_agent_runner import BaseAgentRunner | |
from core.agent.entities import AgentScratchpadUnit | |
from core.agent.output_parser.cot_output_parser import CotAgentOutputParser | |
from core.app.apps.base_app_queue_manager import PublishFrom | |
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent | |
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage | |
from core.model_runtime.entities.message_entities import ( | |
AssistantPromptMessage, | |
PromptMessage, | |
ToolPromptMessage, | |
UserPromptMessage, | |
) | |
from core.tools.entities.tool_entities import ToolInvokeMeta | |
from core.tools.tool.tool import Tool | |
from core.tools.tool_engine import ToolEngine | |
from models.model import Message | |
class CotAgentRunner(BaseAgentRunner, ABC): | |
_is_first_iteration = True | |
_ignore_observation_providers = ['wenxin'] | |
_historic_prompt_messages: list[PromptMessage] = None | |
_agent_scratchpad: list[AgentScratchpadUnit] = None | |
_instruction: str = None | |
_query: str = None | |
_prompt_messages_tools: list[PromptMessage] = None | |
def run(self, message: Message, | |
query: str, | |
inputs: dict[str, str], | |
) -> Union[Generator, LLMResult]: | |
""" | |
Run Cot agent application | |
""" | |
app_generate_entity = self.application_generate_entity | |
self._repack_app_generate_entity(app_generate_entity) | |
self._init_react_state(query) | |
# check model mode | |
if 'Observation' not in app_generate_entity.model_config.stop: | |
if app_generate_entity.model_config.provider not in self._ignore_observation_providers: | |
app_generate_entity.model_config.stop.append('Observation') | |
app_config = self.app_config | |
# init instruction | |
inputs = inputs or {} | |
instruction = app_config.prompt_template.simple_prompt_template | |
self._instruction = self._fill_in_inputs_from_external_data_tools(instruction, inputs) | |
iteration_step = 1 | |
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1 | |
# convert tools into ModelRuntime Tool format | |
tool_instances, self._prompt_messages_tools = self._init_prompt_tools() | |
prompt_messages = self._organize_prompt_messages() | |
function_call_state = True | |
llm_usage = { | |
'usage': None | |
} | |
final_answer = '' | |
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage): | |
if not final_llm_usage_dict['usage']: | |
final_llm_usage_dict['usage'] = usage | |
else: | |
llm_usage = final_llm_usage_dict['usage'] | |
llm_usage.prompt_tokens += usage.prompt_tokens | |
llm_usage.completion_tokens += usage.completion_tokens | |
llm_usage.prompt_price += usage.prompt_price | |
llm_usage.completion_price += usage.completion_price | |
model_instance = self.model_instance | |
while function_call_state and iteration_step <= max_iteration_steps: | |
# continue to run until there is not any tool call | |
function_call_state = False | |
if iteration_step == max_iteration_steps: | |
# the last iteration, remove all tools | |
self._prompt_messages_tools = [] | |
message_file_ids = [] | |
agent_thought = self.create_agent_thought( | |
message_id=message.id, | |
message='', | |
tool_name='', | |
tool_input='', | |
messages_ids=message_file_ids | |
) | |
if iteration_step > 1: | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
# recalc llm max tokens | |
prompt_messages = self._organize_prompt_messages() | |
self.recalc_llm_max_tokens(self.model_config, prompt_messages) | |
# invoke model | |
chunks: Generator[LLMResultChunk, None, None] = model_instance.invoke_llm( | |
prompt_messages=prompt_messages, | |
model_parameters=app_generate_entity.model_config.parameters, | |
tools=[], | |
stop=app_generate_entity.model_config.stop, | |
stream=True, | |
user=self.user_id, | |
callbacks=[], | |
) | |
# check llm result | |
if not chunks: | |
raise ValueError("failed to invoke llm") | |
usage_dict = {} | |
react_chunks = CotAgentOutputParser.handle_react_stream_output(chunks, usage_dict) | |
scratchpad = AgentScratchpadUnit( | |
agent_response='', | |
thought='', | |
action_str='', | |
observation='', | |
action=None, | |
) | |
# publish agent thought if it's first iteration | |
if iteration_step == 1: | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
for chunk in react_chunks: | |
if isinstance(chunk, AgentScratchpadUnit.Action): | |
action = chunk | |
# detect action | |
scratchpad.agent_response += json.dumps(chunk.dict()) | |
scratchpad.action_str = json.dumps(chunk.dict()) | |
scratchpad.action = action | |
else: | |
scratchpad.agent_response += chunk | |
scratchpad.thought += chunk | |
yield LLMResultChunk( | |
model=self.model_config.model, | |
prompt_messages=prompt_messages, | |
system_fingerprint='', | |
delta=LLMResultChunkDelta( | |
index=0, | |
message=AssistantPromptMessage( | |
content=chunk | |
), | |
usage=None | |
) | |
) | |
scratchpad.thought = scratchpad.thought.strip() or 'I am thinking about how to help you' | |
self._agent_scratchpad.append(scratchpad) | |
# get llm usage | |
if 'usage' in usage_dict: | |
increase_usage(llm_usage, usage_dict['usage']) | |
else: | |
usage_dict['usage'] = LLMUsage.empty_usage() | |
self.save_agent_thought( | |
agent_thought=agent_thought, | |
tool_name=scratchpad.action.action_name if scratchpad.action else '', | |
tool_input={ | |
scratchpad.action.action_name: scratchpad.action.action_input | |
} if scratchpad.action else {}, | |
tool_invoke_meta={}, | |
thought=scratchpad.thought, | |
observation='', | |
answer=scratchpad.agent_response, | |
messages_ids=[], | |
llm_usage=usage_dict['usage'] | |
) | |
if not scratchpad.is_final(): | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
if not scratchpad.action: | |
# failed to extract action, return final answer directly | |
final_answer = '' | |
else: | |
if scratchpad.action.action_name.lower() == "final answer": | |
# action is final answer, return final answer directly | |
try: | |
if isinstance(scratchpad.action.action_input, dict): | |
final_answer = json.dumps(scratchpad.action.action_input) | |
elif isinstance(scratchpad.action.action_input, str): | |
final_answer = scratchpad.action.action_input | |
else: | |
final_answer = f'{scratchpad.action.action_input}' | |
except json.JSONDecodeError: | |
final_answer = f'{scratchpad.action.action_input}' | |
else: | |
function_call_state = True | |
# action is tool call, invoke tool | |
tool_invoke_response, tool_invoke_meta = self._handle_invoke_action( | |
action=scratchpad.action, | |
tool_instances=tool_instances, | |
message_file_ids=message_file_ids | |
) | |
scratchpad.observation = tool_invoke_response | |
scratchpad.agent_response = tool_invoke_response | |
self.save_agent_thought( | |
agent_thought=agent_thought, | |
tool_name=scratchpad.action.action_name, | |
tool_input={scratchpad.action.action_name: scratchpad.action.action_input}, | |
thought=scratchpad.thought, | |
observation={scratchpad.action.action_name: tool_invoke_response}, | |
tool_invoke_meta={scratchpad.action.action_name: tool_invoke_meta.to_dict()}, | |
answer=scratchpad.agent_response, | |
messages_ids=message_file_ids, | |
llm_usage=usage_dict['usage'] | |
) | |
self.queue_manager.publish(QueueAgentThoughtEvent( | |
agent_thought_id=agent_thought.id | |
), PublishFrom.APPLICATION_MANAGER) | |
# update prompt tool message | |
for prompt_tool in self._prompt_messages_tools: | |
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool) | |
iteration_step += 1 | |
yield LLMResultChunk( | |
model=model_instance.model, | |
prompt_messages=prompt_messages, | |
delta=LLMResultChunkDelta( | |
index=0, | |
message=AssistantPromptMessage( | |
content=final_answer | |
), | |
usage=llm_usage['usage'] | |
), | |
system_fingerprint='' | |
) | |
# save agent thought | |
self.save_agent_thought( | |
agent_thought=agent_thought, | |
tool_name='', | |
tool_input={}, | |
tool_invoke_meta={}, | |
thought=final_answer, | |
observation={}, | |
answer=final_answer, | |
messages_ids=[] | |
) | |
self.update_db_variables(self.variables_pool, self.db_variables_pool) | |
# publish end event | |
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult( | |
model=model_instance.model, | |
prompt_messages=prompt_messages, | |
message=AssistantPromptMessage( | |
content=final_answer | |
), | |
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(), | |
system_fingerprint='' | |
)), PublishFrom.APPLICATION_MANAGER) | |
def _handle_invoke_action(self, action: AgentScratchpadUnit.Action, | |
tool_instances: dict[str, Tool], | |
message_file_ids: list[str]) -> tuple[str, ToolInvokeMeta]: | |
""" | |
handle invoke action | |
:param action: action | |
:param tool_instances: tool instances | |
:return: observation, meta | |
""" | |
# action is tool call, invoke tool | |
tool_call_name = action.action_name | |
tool_call_args = action.action_input | |
tool_instance = tool_instances.get(tool_call_name) | |
if not tool_instance: | |
answer = f"there is not a tool named {tool_call_name}" | |
return answer, ToolInvokeMeta.error_instance(answer) | |
if isinstance(tool_call_args, str): | |
try: | |
tool_call_args = json.loads(tool_call_args) | |
except json.JSONDecodeError: | |
pass | |
# invoke tool | |
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke( | |
tool=tool_instance, | |
tool_parameters=tool_call_args, | |
user_id=self.user_id, | |
tenant_id=self.tenant_id, | |
message=self.message, | |
invoke_from=self.application_generate_entity.invoke_from, | |
agent_tool_callback=self.agent_callback | |
) | |
# publish files | |
for message_file, save_as in message_files: | |
if save_as: | |
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as) | |
# publish message file | |
self.queue_manager.publish(QueueMessageFileEvent( | |
message_file_id=message_file.id | |
), PublishFrom.APPLICATION_MANAGER) | |
# add message file ids | |
message_file_ids.append(message_file.id) | |
return tool_invoke_response, tool_invoke_meta | |
def _convert_dict_to_action(self, action: dict) -> AgentScratchpadUnit.Action: | |
""" | |
convert dict to action | |
""" | |
return AgentScratchpadUnit.Action( | |
action_name=action['action'], | |
action_input=action['action_input'] | |
) | |
def _fill_in_inputs_from_external_data_tools(self, instruction: str, inputs: dict) -> str: | |
""" | |
fill in inputs from external data tools | |
""" | |
for key, value in inputs.items(): | |
try: | |
instruction = instruction.replace(f'{{{{{key}}}}}', str(value)) | |
except Exception as e: | |
continue | |
return instruction | |
def _init_react_state(self, query) -> None: | |
""" | |
init agent scratchpad | |
""" | |
self._query = query | |
self._agent_scratchpad = [] | |
self._historic_prompt_messages = self._organize_historic_prompt_messages() | |
def _organize_prompt_messages(self) -> list[PromptMessage]: | |
""" | |
organize prompt messages | |
""" | |
def _format_assistant_message(self, agent_scratchpad: list[AgentScratchpadUnit]) -> str: | |
""" | |
format assistant message | |
""" | |
message = '' | |
for scratchpad in agent_scratchpad: | |
if scratchpad.is_final(): | |
message += f"Final Answer: {scratchpad.agent_response}" | |
else: | |
message += f"Thought: {scratchpad.thought}\n\n" | |
if scratchpad.action_str: | |
message += f"Action: {scratchpad.action_str}\n\n" | |
if scratchpad.observation: | |
message += f"Observation: {scratchpad.observation}\n\n" | |
return message | |
def _organize_historic_prompt_messages(self) -> list[PromptMessage]: | |
""" | |
organize historic prompt messages | |
""" | |
result: list[PromptMessage] = [] | |
scratchpad: list[AgentScratchpadUnit] = [] | |
current_scratchpad: AgentScratchpadUnit = None | |
for message in self.history_prompt_messages: | |
if isinstance(message, AssistantPromptMessage): | |
current_scratchpad = AgentScratchpadUnit( | |
agent_response=message.content, | |
thought=message.content or 'I am thinking about how to help you', | |
action_str='', | |
action=None, | |
observation=None, | |
) | |
if message.tool_calls: | |
try: | |
current_scratchpad.action = AgentScratchpadUnit.Action( | |
action_name=message.tool_calls[0].function.name, | |
action_input=json.loads(message.tool_calls[0].function.arguments) | |
) | |
current_scratchpad.action_str = json.dumps( | |
current_scratchpad.action.to_dict() | |
) | |
except: | |
pass | |
scratchpad.append(current_scratchpad) | |
elif isinstance(message, ToolPromptMessage): | |
if current_scratchpad: | |
current_scratchpad.observation = message.content | |
elif isinstance(message, UserPromptMessage): | |
result.append(message) | |
if scratchpad: | |
result.append(AssistantPromptMessage( | |
content=self._format_assistant_message(scratchpad) | |
)) | |
scratchpad = [] | |
if scratchpad: | |
result.append(AssistantPromptMessage( | |
content=self._format_assistant_message(scratchpad) | |
)) | |
return result |