xinjie.wang
update
55ed985
import logging
import os
from tqdm import tqdm
from asset3d_gen.utils.gpt_clients import GPT_CLIENT, GPTclient
from asset3d_gen.utils.process_media import render_asset3d
from asset3d_gen.validators.aesthetic_predictor import AestheticPredictor
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class BaseChecker:
def __init__(self, prompt: str = None, verbose: bool = False) -> None:
self.prompt = prompt
self.verbose = verbose
def query(self, *args, **kwargs):
raise NotImplementedError(
"Subclasses must implement the query method."
)
def __call__(self, *args, **kwargs) -> bool:
response = self.query(*args, **kwargs)
if response is None:
response = "Error when calling gpt api."
if self.verbose and response != "YES":
logger.info(response)
flag = "YES" in response
response = "YES" if flag else response
return flag, response
@staticmethod
def validate(
checkers: list["BaseChecker"], images_list: list[list[str]]
) -> list:
assert len(checkers) == len(images_list)
results = []
overall_result = True
for checker, images in zip(checkers, images_list):
qa_flag, qa_info = checker(images)
if isinstance(qa_info, str):
qa_info = qa_info.replace("\n", ".")
results.append([checker.__class__.__name__, qa_info])
if qa_flag is False:
overall_result = False
results.append(["overall", "YES" if overall_result else "NO"])
return results
class MeshGeoChecker(BaseChecker):
def __init__(
self,
gpt_client: GPTclient,
prompt: str = None,
verbose: bool = False,
) -> None:
super().__init__(prompt, verbose)
self.gpt_client = gpt_client
if self.prompt is None:
self.prompt = """
Refer to the provided multi-view rendering images to evaluate
whether the geometry of the 3D object asset is complete and
whether the asset can be placed stably on the ground.
Return "YES" only if reach the requirments,
otherwise "NO" and explain the reason very briefly.
"""
def query(self, image_paths: str) -> str:
# Hardcode tmp because of the openrouter can't input multi images.
if "openrouter" in self.gpt_client.endpoint:
from asset3d_gen.utils.process_media import (
combine_images_to_base64,
)
image_paths = combine_images_to_base64(image_paths)
return self.gpt_client.query(
text_prompt=self.prompt,
image_base64=image_paths,
)
class ImageSegChecker(BaseChecker):
def __init__(
self,
gpt_client: GPTclient,
prompt: str = None,
verbose: bool = False,
) -> None:
super().__init__(prompt, verbose)
self.gpt_client = gpt_client
if self.prompt is None:
self.prompt = """
The first image is the original, and the second image is the
result after segmenting the main object. Evaluate the segmentation
quality to ensure the main object is clearly segmented without
significant truncation. Note that the foreground of the object
needs to be extracted instead of the background.
Minor imperfections can be ignored. If segmentation is acceptable,
return "YES" only; otherwise, return "NO" with
very brief explanation.
"""
def query(self, image_paths: list[str]) -> str:
if len(image_paths) != 2:
raise ValueError(
"ImageSegChecker requires exactly two images: [raw_image, seg_image]." # noqa
)
# Hardcode tmp because of the openrouter can't input multi images.
if "openrouter" in self.gpt_client.endpoint:
from asset3d_gen.utils.process_media import (
combine_images_to_base64,
)
image_paths = combine_images_to_base64(image_paths)
return self.gpt_client.query(
text_prompt=self.prompt,
image_base64=image_paths,
)
class ImageAestheticChecker(BaseChecker):
def __init__(
self,
clip_model_dir: str = None,
sac_model_path: str = None,
thresh: float = 4.50,
verbose: bool = False,
) -> None:
super().__init__(verbose=verbose)
self.clip_model_dir = clip_model_dir
self.sac_model_path = sac_model_path
self.thresh = thresh
self.predictor = AestheticPredictor(clip_model_dir, sac_model_path)
def query(self, image_paths: list[str]) -> float:
scores = [self.predictor.predict(img_path) for img_path in image_paths]
return sum(scores) / len(scores)
def __call__(self, image_paths: list[str], **kwargs) -> bool:
avg_score = self.query(image_paths)
if self.verbose:
logger.info(f"Average aesthetic score: {avg_score}")
return avg_score > self.thresh, avg_score
if __name__ == "__main__":
geo_checker = MeshGeoChecker(GPT_CLIENT)
seg_checker = ImageSegChecker(GPT_CLIENT)
aesthetic_checker = ImageAestheticChecker(
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/clip",
"/horizon-bucket/robot_lab/users/xinjie.wang/weights/sac/sac+logos+ava1-l14-linearMSE.pth", # noqa
)
checkers = [geo_checker, seg_checker, aesthetic_checker]
output_root = "outputs/test_gpt"
fails = []
for idx in tqdm(range(150)):
mesh_path = f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}.obj" # noqa
if not os.path.exists(mesh_path):
continue
image_paths = render_asset3d(
mesh_path,
f"{output_root}/{idx}",
num_images=8,
elevation=(30, -30),
distance=5.5,
)
for cid, checker in enumerate(checkers):
if isinstance(checker, ImageSegChecker):
images = [
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_raw.png", # noqa
f"outputs/imageto3d/demo_objects/cups/sample_{idx}/sample_{idx}_cond.png", # noqa
]
else:
images = image_paths
result, info = checker(images)
logger.info(
f"Checker {checker.__class__.__name__}: {result}, {info}, mesh {mesh_path}" # noqa
)
if result is False:
fails.append((idx, cid, info))
break