Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor | |
from qwen_vl_utils import process_vision_info | |
import os | |
os.environ["https_proxy"] = "10.9.0.31:8838" | |
# # default: Load the model on the available device(s) | |
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
# "Qwen/Qwen2.5-VL-7B-Instruct", torch_dtype="auto", device_map="auto" | |
# ) | |
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios. | |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | |
"Qwen/Qwen2.5-VL-7B-Instruct", | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
device_map="auto", | |
) | |
# default processer | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct") | |
# The default range for the number of visual tokens per image in the model is 4-16384. | |
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost. | |
# min_pixels = 256*28*28 | |
# max_pixels = 1280*28*28 | |
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": "outputs/text2image/demo_objects/bed/sample_0.jpg", | |
}, | |
{ | |
"type": "image", | |
"image": "outputs/imageto3d/v2/cups/sample_69/URDF_sample_69/qa_renders/image_color/003.png", | |
}, | |
{"type": "text", "text": "Describe the secend image."}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cuda") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
print(output_text) |