Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
import math | |
import trimesh | |
import cv2 | |
import xatlas | |
from typing import Union | |
def get_perspective_projection_matrix(fovy, aspect_wh, near, far): | |
fovy_rad = math.radians(fovy) | |
return np.array( | |
[ | |
[1.0 / (math.tan(fovy_rad / 2.0) * aspect_wh), 0, 0, 0], | |
[0, 1.0 / math.tan(fovy_rad / 2.0), 0, 0], | |
[ | |
0, | |
0, | |
-(far + near) / (far - near), | |
-2.0 * far * near / (far - near), | |
], | |
[0, 0, -1, 0], | |
] | |
).astype(np.float32) | |
def load_mesh(mesh): | |
vtx_pos = mesh.vertices if hasattr(mesh, "vertices") else None | |
pos_idx = mesh.faces if hasattr(mesh, "faces") else None | |
vtx_uv = mesh.visual.uv if hasattr(mesh.visual, "uv") else None | |
uv_idx = mesh.faces if hasattr(mesh, "faces") else None | |
texture_data = None | |
return vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data | |
def save_mesh(mesh, texture_data): | |
material = trimesh.visual.texture.SimpleMaterial( | |
image=texture_data, diffuse=(255, 255, 255) | |
) | |
texture_visuals = trimesh.visual.TextureVisuals( | |
uv=mesh.visual.uv, image=texture_data, material=material | |
) | |
mesh.visual = texture_visuals | |
return mesh | |
def transform_pos(mtx, pos, keepdim=False): | |
t_mtx = ( | |
torch.from_numpy(mtx).to(pos.device) | |
if isinstance(mtx, np.ndarray) | |
else mtx | |
) | |
if pos.shape[-1] == 3: | |
posw = torch.cat( | |
[pos, torch.ones([pos.shape[0], 1]).to(pos.device)], axis=1 | |
) | |
else: | |
posw = pos | |
if keepdim: | |
return torch.matmul(posw, t_mtx.t())[...] | |
else: | |
return torch.matmul(posw, t_mtx.t())[None, ...] | |
def get_mv_matrix(elev, azim, camera_distance, center=None): | |
elev = -elev | |
elev_rad = math.radians(elev) | |
azim_rad = math.radians(azim) | |
camera_position = np.array( | |
[ | |
camera_distance * math.cos(elev_rad) * math.cos(azim_rad), | |
camera_distance * math.cos(elev_rad) * math.sin(azim_rad), | |
camera_distance * math.sin(elev_rad), | |
] | |
) | |
if center is None: | |
center = np.array([0, 0, 0]) | |
else: | |
center = np.array(center) | |
lookat = center - camera_position | |
lookat = lookat / np.linalg.norm(lookat) | |
up = np.array([0, 0, 1.0]) | |
right = np.cross(lookat, up) | |
right = right / np.linalg.norm(right) | |
up = np.cross(right, lookat) | |
up = up / np.linalg.norm(up) | |
c2w = np.concatenate( | |
[np.stack([right, up, -lookat], axis=-1), camera_position[:, None]], | |
axis=-1, | |
) | |
w2c = np.zeros((4, 4)) | |
w2c[:3, :3] = np.transpose(c2w[:3, :3], (1, 0)) | |
w2c[:3, 3:] = -np.matmul(np.transpose(c2w[:3, :3], (1, 0)), c2w[:3, 3:]) | |
w2c[3, 3] = 1.0 | |
return w2c.astype(np.float32) | |
def stride_from_shape(shape): | |
stride = [1] | |
for x in reversed(shape[1:]): | |
stride.append(stride[-1] * x) | |
return list(reversed(stride)) | |
def scatter_add_nd_with_count(input, count, indices, values, weights=None): | |
# input: [..., C], D dimension + C channel | |
# count: [..., 1], D dimension | |
# indices: [N, D], long | |
# values: [N, C] | |
D = indices.shape[-1] | |
C = input.shape[-1] | |
size = input.shape[:-1] | |
stride = stride_from_shape(size) | |
assert len(size) == D | |
input = input.view(-1, C) # [HW, C] | |
count = count.view(-1, 1) | |
flatten_indices = ( | |
indices * torch.tensor(stride, dtype=torch.long, device=indices.device) | |
).sum( | |
-1 | |
) # [N] | |
if weights is None: | |
weights = torch.ones_like(values[..., :1]) | |
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values) | |
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights) | |
return input.view(*size, C), count.view(*size, 1) | |
def linear_grid_put_2d(H, W, coords, values, return_count=False): | |
# coords: [N, 2], float in [0, 1] | |
# values: [N, C] | |
C = values.shape[-1] | |
indices = coords * torch.tensor( | |
[H - 1, W - 1], dtype=torch.float32, device=coords.device | |
) | |
indices_00 = indices.floor().long() # [N, 2] | |
indices_00[:, 0].clamp_(0, H - 2) | |
indices_00[:, 1].clamp_(0, W - 2) | |
indices_01 = indices_00 + torch.tensor( | |
[0, 1], dtype=torch.long, device=indices.device | |
) | |
indices_10 = indices_00 + torch.tensor( | |
[1, 0], dtype=torch.long, device=indices.device | |
) | |
indices_11 = indices_00 + torch.tensor( | |
[1, 1], dtype=torch.long, device=indices.device | |
) | |
h = indices[..., 0] - indices_00[..., 0].float() | |
w = indices[..., 1] - indices_00[..., 1].float() | |
w_00 = (1 - h) * (1 - w) | |
w_01 = (1 - h) * w | |
w_10 = h * (1 - w) | |
w_11 = h * w | |
result = torch.zeros( | |
H, W, C, device=values.device, dtype=values.dtype | |
) # [H, W, C] | |
count = torch.zeros( | |
H, W, 1, device=values.device, dtype=values.dtype | |
) # [H, W, 1] | |
weights = torch.ones_like(values[..., :1]) # [N, 1] | |
result, count = scatter_add_nd_with_count( | |
result, | |
count, | |
indices_00, | |
values * w_00.unsqueeze(1), | |
weights * w_00.unsqueeze(1), | |
) | |
result, count = scatter_add_nd_with_count( | |
result, | |
count, | |
indices_01, | |
values * w_01.unsqueeze(1), | |
weights * w_01.unsqueeze(1), | |
) | |
result, count = scatter_add_nd_with_count( | |
result, | |
count, | |
indices_10, | |
values * w_10.unsqueeze(1), | |
weights * w_10.unsqueeze(1), | |
) | |
result, count = scatter_add_nd_with_count( | |
result, | |
count, | |
indices_11, | |
values * w_11.unsqueeze(1), | |
weights * w_11.unsqueeze(1), | |
) | |
if return_count: | |
return result, count | |
mask = count.squeeze(-1) > 0 | |
result[mask] = result[mask] / count[mask].repeat(1, C) | |
return result | |
def meshVerticeInpaint_smooth(texture, mask, vtx_pos, vtx_uv, pos_idx, uv_idx): | |
texture_height, texture_width, texture_channel = texture.shape | |
vtx_num = vtx_pos.shape[0] | |
vtx_mask = np.zeros(vtx_num, dtype=np.float32) | |
vtx_color = [ | |
np.zeros(texture_channel, dtype=np.float32) for _ in range(vtx_num) | |
] | |
uncolored_vtxs = [] | |
G = [[] for _ in range(vtx_num)] | |
for i in range(uv_idx.shape[0]): | |
for k in range(3): | |
vtx_uv_idx = uv_idx[i, k] | |
vtx_idx = pos_idx[i, k] | |
uv_v = int(round(vtx_uv[vtx_uv_idx, 0] * (texture_width - 1))) | |
uv_u = int( | |
round((1.0 - vtx_uv[vtx_uv_idx, 1]) * (texture_height - 1)) | |
) | |
if mask[uv_u, uv_v] > 0: | |
vtx_mask[vtx_idx] = 1.0 | |
vtx_color[vtx_idx] = texture[uv_u, uv_v] | |
else: | |
uncolored_vtxs.append(vtx_idx) | |
G[pos_idx[i, k]].append(pos_idx[i, (k + 1) % 3]) | |
smooth_count = 2 | |
last_uncolored_vtx_count = 0 | |
while smooth_count > 0: | |
uncolored_vtx_count = 0 | |
for vtx_idx in uncolored_vtxs: | |
sum_color = np.zeros(texture_channel, dtype=np.float32) | |
total_weight = 0.0 | |
vtx_0 = vtx_pos[vtx_idx] | |
for connected_idx in G[vtx_idx]: | |
if vtx_mask[connected_idx] > 0: | |
vtx1 = vtx_pos[connected_idx] | |
dist = np.sqrt(np.sum((vtx_0 - vtx1) ** 2)) | |
dist_weight = 1.0 / max(dist, 1e-4) | |
dist_weight *= dist_weight | |
sum_color += vtx_color[connected_idx] * dist_weight | |
total_weight += dist_weight | |
if total_weight > 0: | |
vtx_color[vtx_idx] = sum_color / total_weight | |
vtx_mask[vtx_idx] = 1.0 | |
else: | |
uncolored_vtx_count += 1 | |
if last_uncolored_vtx_count == uncolored_vtx_count: | |
smooth_count -= 1 | |
else: | |
smooth_count += 1 | |
last_uncolored_vtx_count = uncolored_vtx_count | |
new_texture = texture.copy() | |
new_mask = mask.copy() | |
for face_idx in range(uv_idx.shape[0]): | |
for k in range(3): | |
vtx_uv_idx = uv_idx[face_idx, k] | |
vtx_idx = pos_idx[face_idx, k] | |
if vtx_mask[vtx_idx] == 1.0: | |
uv_v = int(round(vtx_uv[vtx_uv_idx, 0] * (texture_width - 1))) | |
uv_u = int( | |
round((1.0 - vtx_uv[vtx_uv_idx, 1]) * (texture_height - 1)) | |
) | |
new_texture[uv_u, uv_v] = vtx_color[vtx_idx] | |
new_mask[uv_u, uv_v] = 255 | |
return new_texture, new_mask | |
def mesh_uv_wrap(mesh): | |
if isinstance(mesh, trimesh.Scene): | |
mesh = mesh.dump(concatenate=True) | |
if len(mesh.faces) > 500000000: | |
raise ValueError( | |
"The mesh has more than 500,000,000 faces, which is not supported." | |
) | |
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces) | |
mesh.vertices = mesh.vertices[vmapping] | |
mesh.faces = indices | |
mesh.visual.uv = uvs | |
return mesh | |
class MeshRender: | |
def __init__( | |
self, | |
camera_distance=1.45, | |
default_resolution=1024, | |
texture_size=1024, | |
use_antialias=True, | |
max_mip_level=None, | |
filter_mode="linear", | |
bake_mode="linear", | |
raster_mode="cr", | |
device="cuda", | |
): | |
self.device = device | |
self.set_default_render_resolution(default_resolution) | |
self.set_default_texture_resolution(texture_size) | |
self.camera_distance = camera_distance | |
self.use_antialias = use_antialias | |
self.max_mip_level = max_mip_level | |
self.filter_mode = filter_mode | |
self.bake_angle_thres = 75 | |
self.bake_unreliable_kernel_size = int( | |
(2 / 512) | |
* max(self.default_resolution[0], self.default_resolution[1]) | |
) | |
self.bake_mode = bake_mode | |
self.raster_mode = raster_mode | |
if self.raster_mode == "cr": | |
import custom_rasterizer as cr | |
self.raster = cr | |
else: | |
raise f"No raster named {self.raster_mode}" | |
fov = 30 | |
self.camera_proj_mat = get_perspective_projection_matrix( | |
fov, | |
self.default_resolution[1] / self.default_resolution[0], | |
0.01, | |
100.0, | |
) | |
def raster_rasterize( | |
self, pos, tri, resolution, ranges=None, grad_db=True | |
): | |
if self.raster_mode == "cr": | |
rast_out_db = None | |
if pos.dim() == 2: | |
pos = pos.unsqueeze(0) | |
findices, barycentric = self.raster.rasterize(pos, tri, resolution) | |
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1) | |
rast_out = rast_out.unsqueeze(0) | |
else: | |
raise f"No raster named {self.raster_mode}" | |
return rast_out, rast_out_db | |
def raster_interpolate( | |
self, uv, rast_out, uv_idx, rast_db=None, diff_attrs=None | |
): | |
if self.raster_mode == "cr": | |
textd = None | |
barycentric = rast_out[0, ..., :-1] | |
findices = rast_out[0, ..., -1] | |
if uv.dim() == 2: | |
uv = uv.unsqueeze(0) | |
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx) | |
else: | |
raise f"No raster named {self.raster_mode}" | |
return textc, textd | |
def load_mesh( | |
self, | |
mesh, | |
): | |
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh) | |
self.mesh_copy = mesh | |
self.set_mesh( | |
vtx_pos, | |
pos_idx, | |
vtx_uv=vtx_uv, | |
uv_idx=uv_idx, | |
) | |
if texture_data is not None: | |
self.set_texture(texture_data) | |
def save_mesh(self): | |
texture_data = self.get_texture() | |
texture_data = Image.fromarray((texture_data * 255).astype(np.uint8)) | |
return save_mesh(self.mesh_copy, texture_data) | |
def set_mesh( | |
self, | |
vtx_pos, | |
pos_idx, | |
vtx_uv=None, | |
uv_idx=None, | |
): | |
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device).float() | |
self.pos_idx = torch.from_numpy(pos_idx).to(self.device).to(torch.int) | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device).float() | |
self.uv_idx = ( | |
torch.from_numpy(uv_idx).to(self.device).to(torch.int) | |
) | |
else: | |
self.vtx_uv = None | |
self.uv_idx = None | |
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]] | |
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]] | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1] | |
def set_texture(self, tex): | |
if isinstance(tex, np.ndarray): | |
tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
elif isinstance(tex, torch.Tensor): | |
tex = tex.cpu().numpy() | |
tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
tex = tex.resize(self.texture_size).convert("RGB") | |
tex = np.array(tex) / 255.0 | |
self.tex = torch.from_numpy(tex).to(self.device) | |
self.tex = self.tex.float() | |
def set_default_render_resolution(self, default_resolution): | |
if isinstance(default_resolution, int): | |
default_resolution = (default_resolution, default_resolution) | |
self.default_resolution = default_resolution | |
def set_default_texture_resolution(self, texture_size): | |
if isinstance(texture_size, int): | |
texture_size = (texture_size, texture_size) | |
self.texture_size = texture_size | |
def get_mesh(self): | |
vtx_pos = self.vtx_pos.cpu().numpy() | |
pos_idx = self.pos_idx.cpu().numpy() | |
vtx_uv = self.vtx_uv.cpu().numpy() | |
uv_idx = self.uv_idx.cpu().numpy() | |
# 坐标变换的逆变换 | |
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]] | |
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]] | |
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1] | |
return vtx_pos, pos_idx, vtx_uv, uv_idx | |
def get_texture(self): | |
return self.tex.cpu().numpy() | |
def render_sketch_from_depth(self, depth_image): | |
depth_image_np = depth_image.cpu().numpy() | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
combined_edges = depth_edges | |
sketch_image = ( | |
torch.from_numpy(combined_edges).to(depth_image.device).float() | |
/ 255.0 | |
) | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def back_project( | |
self, image, elev, azim, camera_distance=None, center=None, method=None | |
): | |
if isinstance(image, Image.Image): | |
image = torch.tensor(np.array(image) / 255.0) | |
elif isinstance(image, np.ndarray): | |
image = torch.tensor(image) | |
if image.dim() == 2: | |
image = image.unsqueeze(-1) | |
image = image.float().to(self.device) | |
resolution = image.shape[:2] | |
channel = image.shape[-1] | |
texture = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device) | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=elev, | |
azim=azim, | |
camera_distance=( | |
self.camera_distance | |
if camera_distance is None | |
else camera_distance | |
), | |
center=center, | |
) | |
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
pos_clip = transform_pos(proj, pos_camera) | |
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
v0 = pos_camera[self.pos_idx[:, 0], :] | |
v1 = pos_camera[self.pos_idx[:, 1], :] | |
v2 = pos_camera[self.pos_idx[:, 2], :] | |
face_normals = F.normalize( | |
torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1 | |
) | |
vertex_normals = trimesh.geometry.mean_vertex_normals( | |
vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), | |
) | |
vertex_normals = ( | |
torch.from_numpy(vertex_normals) | |
.float() | |
.to(self.device) | |
.contiguous() | |
) | |
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous() | |
rast_out, rast_out_db = self.raster_rasterize( | |
pos_clip, self.pos_idx, resolution=resolution | |
) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
normal, _ = self.raster_interpolate( | |
vertex_normals[None, ...], rast_out, self.pos_idx | |
) | |
normal = normal[0, ...] | |
uv, _ = self.raster_interpolate( | |
self.vtx_uv[None, ...], rast_out, self.uv_idx | |
) | |
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx) | |
depth = depth[0, ...] | |
depth_max, depth_min = ( | |
depth[visible_mask > 0].max(), | |
depth[visible_mask > 0].min(), | |
) | |
depth_normalized = (depth - depth_min) / (depth_max - depth_min) | |
depth_image = depth_normalized * visible_mask # Mask out background. | |
sketch_image = self.render_sketch_from_depth(depth_image) | |
cv2.imwrite("d_depth.png", depth_image.cpu().numpy() * 255) | |
cv2.imwrite("d_normal.png", normal.cpu().numpy() * 255) | |
cv2.imwrite( | |
"d_image.png", image.cpu().numpy()[..., :3][..., ::-1] * 255 | |
) | |
cv2.imwrite("d_sketch_image.png", sketch_image.cpu().numpy() * 255) | |
cv2.imwrite("d_uv1.png", uv.cpu().numpy()[0, ..., 0] * 255) | |
cv2.imwrite("d_uv2.png", uv.cpu().numpy()[0, ..., 1] * 255) | |
# p uv[0,...,0].mean(axis=0) | |
# import pdb; pdb.set_trace() | |
# depth_image = None | |
# normal = None | |
# image = None | |
sketch_image = self.render_sketch_from_depth(depth_image) | |
channel = image.shape[-1] | |
lookat = torch.tensor([[0, 0, -1]], device=self.device) | |
cos_image = torch.nn.functional.cosine_similarity( | |
lookat, normal.view(-1, 3) | |
) | |
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1) | |
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi) | |
cos_image[cos_image < cos_thres] = 0 | |
# shrink | |
kernel_size = self.bake_unreliable_kernel_size * 2 + 1 | |
kernel = torch.ones( | |
(1, 1, kernel_size, kernel_size), dtype=torch.float32 | |
).to(sketch_image.device) | |
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float() | |
visible_mask = F.conv2d( | |
1.0 - visible_mask, kernel, padding=kernel_size // 2 | |
) | |
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化 | |
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0) | |
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0) | |
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2) | |
sketch_image = (sketch_image > 0).float() # 二值化 | |
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0) | |
visible_mask = visible_mask * (sketch_image < 0.5) | |
cos_image[visible_mask == 0] = 0 | |
proj_mask = (visible_mask != 0).view(-1) | |
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask] | |
import pdb | |
pdb.set_trace() | |
texture = linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image | |
) | |
cos_map = linear_grid_put_2d( | |
self.texture_size[1], | |
self.texture_size[0], | |
uv[..., [1, 0]], | |
cos_image, | |
) | |
boundary_map = linear_grid_put_2d( | |
self.texture_size[1], | |
self.texture_size[0], | |
uv[..., [1, 0]], | |
sketch_image, | |
) | |
return texture, cos_map, boundary_map | |
def fast_bake_texture(self, textures, cos_maps): | |
channel = textures[0].shape[-1] | |
texture_merge = torch.zeros(self.texture_size + (channel,)).to( | |
self.device | |
) | |
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device) | |
for texture, cos_map in zip(textures, cos_maps): | |
view_sum = (cos_map > 0).sum() | |
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum() | |
if painted_sum / view_sum > 0.99: | |
continue | |
texture_merge += texture * cos_map | |
trust_map_merge += cos_map | |
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8) | |
return texture_merge, trust_map_merge > 1e-8 | |
def uv_inpaint(self, texture, mask): | |
if isinstance(texture, torch.Tensor): | |
texture_np = texture.cpu().numpy() | |
elif isinstance(texture, np.ndarray): | |
texture_np = texture | |
elif isinstance(texture, Image.Image): | |
texture_np = np.array(texture) / 255.0 | |
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh() | |
texture_np, mask = meshVerticeInpaint_smooth( | |
texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx | |
) | |
texture_np = cv2.inpaint( | |
(texture_np * 255).astype(np.uint8), 255 - mask, 3, cv2.INPAINT_NS | |
) | |
return texture_np | |
def get_images_from_file(img_path: str, img_size: int) -> list[np.array]: | |
input_image = Image.open(img_path) | |
view_images = np.array(input_image) | |
view_images = np.concatenate( | |
[view_images[:img_size, ...], view_images[img_size:, ...]], axis=1 | |
) | |
images = np.split(view_images, view_images.shape[1] // img_size, axis=1) | |
return images | |
def bake_from_multiview( | |
render, views, camera_elevs, camera_azims, view_weights, method="fast" | |
): | |
project_textures, project_weighted_cos_maps = [], [] | |
project_boundary_maps = [] | |
for view, camera_elev, camera_azim, weight in zip( | |
views, camera_elevs, camera_azims, view_weights | |
): | |
project_texture, project_cos_map, project_boundary_map = ( | |
render.back_project(view, camera_elev, camera_azim) | |
) | |
project_cos_map = weight * (project_cos_map**4) | |
project_textures.append(project_texture) | |
project_weighted_cos_maps.append(project_cos_map) | |
project_boundary_maps.append(project_boundary_map) | |
if method == "fast": | |
texture, ori_trust_map = render.fast_bake_texture( | |
project_textures, project_weighted_cos_maps | |
) | |
else: | |
raise f"no method {method}" | |
return texture, ori_trust_map > 1e-8 | |
def post_process(texture: np.ndarray, iter: int = 2) -> np.ndarray: | |
for _ in range(iter): | |
texture = cv2.fastNlMeansDenoisingColored(texture, None, 11, 11, 9, 25) | |
texture = cv2.bilateralFilter( | |
texture, d=7, sigmaColor=80, sigmaSpace=80 | |
) | |
return texture | |
class Image_Super_Net: | |
def __init__(self, device="cuda"): | |
from diffusers import StableDiffusionUpscalePipeline | |
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained( | |
"stabilityai/stable-diffusion-x4-upscaler", | |
torch_dtype=torch.float16, | |
).to(device) | |
self.up_pipeline_x4.set_progress_bar_config(disable=True) | |
def __call__(self, image, prompt=""): | |
with torch.no_grad(): | |
upscaled_image = self.up_pipeline_x4( | |
prompt=[prompt], | |
image=image, | |
num_inference_steps=10, | |
).images[0] | |
return upscaled_image | |
class Image_GANNet: | |
def __init__(self, outscale: int): | |
from realesrgan import RealESRGANer | |
from basicsr.archs.rrdbnet_arch import RRDBNet | |
self.outscale = outscale | |
model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=4, | |
) | |
self.upsampler = RealESRGANer( | |
scale=4, | |
model_path="/home/users/xinjie.wang/xinjie/Real-ESRGAN/weights/RealESRGAN_x4plus.pth", | |
model=model, | |
pre_pad=0, | |
half=True, | |
) | |
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image: | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
output, _ = self.upsampler.enhance(image, outscale=self.outscale) | |
return Image.fromarray(output) | |
if __name__ == "__main__": | |
device = "cuda" | |
# super_model = Image_Super_Net(device) | |
super_model = Image_GANNet(outscale=4) | |
selected_camera_elevs = [20, 20, 20, -10, -10, -10] | |
selected_camera_azims = [-180, -60, 60, -120, 0, 120] | |
selected_view_weights = [1, 0.2, 0.2, 0.2, 1, 0.2] | |
# selected_view_weights = [1, 0.1, 0.5, 0.1, 0.05, 0.05] | |
multiviews = get_images_from_file( | |
"scripts/apps/texture_sessions/mfq4e7u4ko/multi_view/color_sample1.png", | |
512, | |
) | |
target_image_size = (2048, 2048) | |
render = MeshRender( | |
camera_distance=5, | |
default_resolution=2048, | |
texture_size=2048, | |
) | |
mesh = trimesh.load("scripts/apps/assets/example_texture/meshes/robot.obj") | |
from asset3d_gen.data.utils import normalize_vertices_array | |
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices) | |
mesh = mesh_uv_wrap(mesh) | |
render.load_mesh(mesh) | |
# multiviews = [Image.fromarray(img) for img in multiviews] | |
# multiviews = [Image.fromarray(img).convert("RGB") for img in multiviews] | |
# for idx, img in enumerate(multiviews): | |
# img.save(f"robot/raw/res_{idx}.png") | |
multiviews = [super_model(img) for img in multiviews] | |
multiviews = [img.convert("RGB") for img in multiviews] | |
for idx, img in enumerate(multiviews): | |
img.save(f"robot/super_gan_res_{idx}.png") | |
texture, mask = bake_from_multiview( | |
render, | |
multiviews, | |
selected_camera_elevs, | |
selected_camera_azims, | |
selected_view_weights, | |
) | |
texture_np = (texture.cpu().numpy() * 255).astype(np.uint8)[..., :3][ | |
..., ::-1 | |
] | |
cv2.imwrite("robot/raw_texture.png", texture_np) | |
print("texture done.") | |
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8) | |
texture_np = render.uv_inpaint(texture, mask_np) | |
cv2.imwrite("robot/inpaint_texture.png", texture_np[..., ::-1]) | |
# texture_np = post_process(texture_np, 2) | |
# cv2.imwrite("robot/inpaint_conv_texture.png", texture_np[..., ::-1]) | |
print("inpaint done.") | |
texture = torch.tensor(texture_np / 255).float().to(texture.device) | |
render.set_texture(texture) | |
textured_mesh = render.save_mesh() | |
_ = textured_mesh.export("robot/robot.obj") | |