xinjie.wang
update
55ed985
import logging
import math
from typing import Union
import custom_rasterizer as cr
import cv2
import numpy as np
import torch
import torch.nn.functional as F
import trimesh
import xatlas
from PIL import Image
from asset3d_gen.data.utils import (
get_images_from_file,
normalize_vertices_array,
post_process_texture,
save_mesh_with_mtl,
)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
__all__ = ["TextureBacker", "Image_Super_Net", "Image_GANNet"]
import math
import numpy as np
def get_perspective_projection(
fov: float, aspect_wh: float, near: float = 0.01, far: float = 100
) -> np.ndarray:
"""Compute the perspective projection matrix for 3D rendering."""
fov_rad = math.radians(fov)
tan_half_fov = math.tan(fov_rad / 2.0)
return np.array(
[
[1.0 / (tan_half_fov * aspect_wh), 0.0, 0.0, 0.0],
[0.0, 1.0 / tan_half_fov, 0.0, 0.0],
[
0.0,
0.0,
-(far + near) / (far - near),
-(2.0 * far * near) / (far - near),
],
[0.0, 0.0, -1.0, 0.0],
],
dtype=np.float32,
)
def transform_vertices(
mtx: torch.Tensor, pos: torch.Tensor, keepdim: bool = False
) -> torch.Tensor:
"""Transform 3D vertices using a projection matrix."""
t_mtx = torch.as_tensor(mtx, device=pos.device, dtype=pos.dtype)
if pos.size(-1) == 3:
pos = torch.cat([pos, torch.ones_like(pos[..., :1])], dim=-1)
result = pos @ t_mtx.T
return result if keepdim else result.unsqueeze(0)
def compute_w2c_matrix(
elev_deg: float, azim_deg: float, cam_dist: float
) -> np.ndarray:
"""Compute w2c 4x4 transformation matrix from spherical coordinates."""
elev_rad = math.radians(-elev_deg)
azim_rad = math.radians(azim_deg)
sin_elev = math.sin(elev_rad)
cos_elev = math.cos(elev_rad)
sin_azim = math.sin(azim_rad)
cos_azim = math.cos(azim_rad)
cam_pos = np.array(
[
cam_dist * cos_elev * cos_azim,
cam_dist * cos_elev * sin_azim,
cam_dist * sin_elev,
]
)
look_dir = -cam_pos / np.linalg.norm(cam_pos)
right_dir = np.cross(look_dir, [0, 0, 1])
right_dir /= np.linalg.norm(right_dir)
up_dir = np.cross(right_dir, look_dir)
c2w = np.eye(4)
c2w[:3, 0] = right_dir
c2w[:3, 1] = up_dir
c2w[:3, 2] = -look_dir
c2w[:3, 3] = cam_pos
try:
w2c = np.linalg.inv(c2w)
except np.linalg.LinAlgError as e:
raise ArithmeticError("Failed to invert camera-to-world matrix") from e
return w2c.astype(np.float32)
def _bilinear_interpolation_scattering(
image_h: int, image_w: int, coords: torch.Tensor, values: torch.Tensor
) -> torch.Tensor:
"""Bilinear interpolation scattering for grid-based value accumulation."""
device = values.device
dtype = values.dtype
C = values.shape[-1]
indices = coords * torch.tensor(
[image_h - 1, image_w - 1], dtype=dtype, device=device
)
i, j = indices.unbind(-1)
i0, j0 = (
indices.floor()
.long()
.clamp(0, image_h - 2)
.clamp(0, image_w - 2)
.unbind(-1)
)
i1, j1 = i0 + 1, j0 + 1
w_i = i - i0.float()
w_j = j - j0.float()
weights = torch.stack(
[(1 - w_i) * (1 - w_j), (1 - w_i) * w_j, w_i * (1 - w_j), w_i * w_j],
dim=1,
)
indices_comb = torch.stack(
[
torch.stack([i0, j0], dim=1),
torch.stack([i0, j1], dim=1),
torch.stack([i1, j0], dim=1),
torch.stack([i1, j1], dim=1),
],
dim=1,
)
grid = torch.zeros(image_h, image_w, C, device=device, dtype=dtype)
cnt = torch.zeros(image_h, image_w, 1, device=device, dtype=dtype)
for k in range(4):
idx = indices_comb[:, k]
w = weights[:, k].unsqueeze(-1)
stride = torch.tensor([image_w, 1], device=device, dtype=torch.long)
flat_idx = (idx * stride).sum(-1)
grid.view(-1, C).scatter_add_(
0, flat_idx.unsqueeze(-1).expand(-1, C), values * w
)
cnt.view(-1, 1).scatter_add_(0, flat_idx.unsqueeze(-1), w)
mask = cnt.squeeze(-1) > 0
grid[mask] = grid[mask] / cnt[mask].repeat(1, C)
return grid
def _texture_inpaint_smooth(
texture: np.ndarray,
mask: np.ndarray,
vertices: np.ndarray,
faces: np.ndarray,
uv_map: np.ndarray,
) -> tuple[np.ndarray, np.ndarray]:
"""Perform texture inpainting using vertex-based color propagation."""
image_h, image_w, C = texture.shape
N = vertices.shape[0]
# Initialize vertex data structures
vtx_mask = np.zeros(N, dtype=np.float32)
vtx_colors = np.zeros((N, C), dtype=np.float32)
unprocessed = []
adjacency = [[] for _ in range(N)]
# Build adjacency graph and initial color assignment
for face_idx in range(faces.shape[0]):
for k in range(3):
uv_idx_k = faces[face_idx, k]
v_idx = faces[face_idx, k]
# Convert UV to pixel coordinates with boundary clamping
u = np.clip(
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
)
v = np.clip(
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
0,
image_h - 1,
)
if mask[v, u]:
vtx_mask[v_idx] = 1.0
vtx_colors[v_idx] = texture[v, u]
elif v_idx not in unprocessed:
unprocessed.append(v_idx)
# Build undirected adjacency graph
neighbor = faces[face_idx, (k + 1) % 3]
if neighbor not in adjacency[v_idx]:
adjacency[v_idx].append(neighbor)
if v_idx not in adjacency[neighbor]:
adjacency[neighbor].append(v_idx)
# Color propagation with dynamic stopping
remaining_iters, prev_count = 2, 0
while remaining_iters > 0:
current_unprocessed = []
for v_idx in unprocessed:
valid_neighbors = [n for n in adjacency[v_idx] if vtx_mask[n] > 0]
if not valid_neighbors:
current_unprocessed.append(v_idx)
continue
# Calculate inverse square distance weights
neighbors_pos = vertices[valid_neighbors]
dist_sq = np.sum((vertices[v_idx] - neighbors_pos) ** 2, axis=1)
weights = 1 / np.maximum(dist_sq, 1e-8)
vtx_colors[v_idx] = np.average(
vtx_colors[valid_neighbors], weights=weights, axis=0
)
vtx_mask[v_idx] = 1.0
# Update iteration control
if len(current_unprocessed) == prev_count:
remaining_iters -= 1
else:
remaining_iters = min(remaining_iters + 1, 2)
prev_count = len(current_unprocessed)
unprocessed = current_unprocessed
# Generate output texture
inpainted_texture, updated_mask = texture.copy(), mask.copy()
for face_idx in range(faces.shape[0]):
for k in range(3):
v_idx = faces[face_idx, k]
if not vtx_mask[v_idx]:
continue
# UV coordinate conversion
uv_idx_k = faces[face_idx, k]
u = np.clip(
int(round(uv_map[uv_idx_k, 0] * (image_w - 1))), 0, image_w - 1
)
v = np.clip(
int(round((1.0 - uv_map[uv_idx_k, 1]) * (image_h - 1))),
0,
image_h - 1,
)
inpainted_texture[v, u] = vtx_colors[v_idx]
updated_mask[v, u] = 255
return inpainted_texture, updated_mask
class TextureBacker:
"""Texture baking pipeline for multi-view projection and fusion."""
def __init__(
self,
camera_elevs: list[float],
camera_azims: list[float],
camera_distance: int,
camera_fov: float,
view_weights: list[float] = None,
render_wh: tuple[int, int] = (2048, 2048),
texture_wh: tuple[int, int] = (2048, 2048),
use_antialias: bool = True,
bake_angle_thresh: int = 75,
device="cuda",
):
self.camera_elevs = camera_elevs
self.camera_azims = camera_azims
self.view_weights = (
view_weights
if view_weights is not None
else [1] * len(camera_elevs)
)
self.device = device
self.render_wh = render_wh
self.texture_wh = texture_wh
self.camera_distance = camera_distance
self.use_antialias = use_antialias
self.bake_angle_thresh = bake_angle_thresh
self.bake_unreliable_kernel_size = int(
(2 / 512) * max(self.render_wh[0], self.render_wh[1])
)
self.camera_proj_mat = get_perspective_projection(
camera_fov,
self.render_wh[1] / self.render_wh[0],
)
self.cnt = 0
def rasterize_mesh(
self,
vertex: torch.Tensor,
face: torch.Tensor,
resolution: tuple[int, int],
) -> torch.Tensor:
vertex = vertex[None] if vertex.ndim == 2 else vertex
indices, weights = cr.rasterize(vertex, face, resolution)
return torch.cat(
[weights, indices.unsqueeze(-1).to(weights.dtype)], dim=-1
).unsqueeze(0)
def raster_interpolate(
self, uv: torch.Tensor, rast_out: torch.Tensor, faces: torch.Tensor
) -> torch.Tensor:
barycentric = rast_out[0, ..., :-1]
findices = rast_out[0, ..., -1]
if uv.dim() == 2:
uv = uv.unsqueeze(0)
return cr.interpolate(uv, findices, barycentric, faces)[0]
def load_mesh(self, mesh_path: str) -> None:
mesh = trimesh.load(mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
self.scale, self.center = scale, center
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
mesh.vertices = mesh.vertices[vmapping]
mesh.faces = indices
mesh.visual.uv = uvs
self.vertices = torch.from_numpy(mesh.vertices).to(self.device).float()
self.faces = torch.from_numpy(mesh.faces).to(self.device).to(torch.int)
self.uv_map = torch.from_numpy(mesh.visual.uv).to(self.device).float()
# Transformation of coordinate system
self.vertices[:, [0, 1]] = -self.vertices[:, [0, 1]]
self.vertices[:, [1, 2]] = self.vertices[:, [2, 1]]
self.uv_map[:, 1] = 1 - self.uv_map[:, 1]
def get_mesh_attrs(
self,
scale: float = None,
center: np.ndarray = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
vertices = self.vertices.cpu().numpy()
faces = self.faces.cpu().numpy()
uv_map = self.uv_map.cpu().numpy()
if scale is not None:
vertices = vertices / scale
if center is not None:
vertices = vertices + center
return vertices, faces, uv_map
def _render_depth_edges(self, depth_image: torch.Tensor) -> torch.Tensor:
depth_image_np = depth_image.cpu().numpy()
depth_image_np = (depth_image_np * 255).astype(np.uint8)
depth_edges = cv2.Canny(depth_image_np, 30, 80)
sketch_image = (
torch.from_numpy(depth_edges).to(depth_image.device).float() / 255
)
sketch_image = sketch_image.unsqueeze(-1)
return sketch_image
def back_project(
self, image: Image.Image, elev: float, azim: float
) -> tuple[torch.Tensor, torch.Tensor]:
if isinstance(image, Image.Image):
image = np.array(image)
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
if image.ndim == 2:
image = image.unsqueeze(-1)
image = image / 255.0
view_mat = compute_w2c_matrix(elev, azim, self.camera_distance)
pos_cam = transform_vertices(view_mat, self.vertices, keepdim=True)
pos_clip = transform_vertices(self.camera_proj_mat, pos_cam)
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
v0, v1, v2 = (pos_cam[self.faces[:, i]] for i in range(3))
face_norm = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
vertex_norm = (
torch.from_numpy(
trimesh.geometry.mean_vertex_normals(
len(pos_cam), self.faces.cpu(), face_norm.cpu()
)
)
.to(self.device)
.contiguous()
)
rast_out = self.rasterize_mesh(pos_clip, self.faces, image.shape[:2])
vis_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0]
interp_data = {
"normal": self.raster_interpolate(
vertex_norm[None], rast_out, self.faces
),
"uv": self.raster_interpolate(
self.uv_map[None], rast_out, self.faces
),
"depth": self.raster_interpolate(
pos_cam[:, 2].reshape(1, -1, 1), rast_out, self.faces
),
}
valid_depth = interp_data["depth"][vis_mask > 0]
depth_norm = (interp_data["depth"] - valid_depth.min()) / (
valid_depth.max() - valid_depth.min()
)
depth_norm[vis_mask <= 0] = 0
sketch_image = self._render_depth_edges(depth_norm * vis_mask)
# cv2.imwrite("vis_mask.png", (vis_mask.cpu().numpy() * 255).astype(np.uint8))
# cv2.imwrite("normal.png", (interp_data['normal'].cpu().numpy() * 255).astype(np.uint8))
# cv2.imwrite("depth.png", (depth_norm.cpu().numpy() * 255).astype(np.uint8))
# cv2.imwrite("uv.png", (interp_data['uv'][..., 0].cpu().numpy() * 255).astype(np.uint8))
# import pdb; pdb.set_trace()
cos = F.cosine_similarity(
torch.tensor([[0, 0, -1]], device=self.device),
interp_data["normal"].view(-1, 3),
).view_as(interp_data["normal"][..., :1])
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
k = self.bake_unreliable_kernel_size * 2 + 1
kernel = torch.ones((1, 1, k, k), device=self.device)
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
vis_mask = F.conv2d(
1.0 - vis_mask,
kernel,
padding=k // 2,
)
vis_mask = 1.0 - (vis_mask > 0).float()
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
sketch_image = (sketch_image > 0).float()
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
vis_mask = vis_mask * (sketch_image < 0.5)
cos[vis_mask == 0] = 0
valid_pixels = (vis_mask != 0).view(-1)
return (
self._scatter_texture(interp_data["uv"], image, valid_pixels),
self._scatter_texture(interp_data["uv"], cos, valid_pixels),
)
def back_project2(
self, image, vis_mask, depth, normal, uv
) -> tuple[torch.Tensor, torch.Tensor]:
if isinstance(image, Image.Image):
image = np.array(image)
image = torch.as_tensor(image, device=self.device, dtype=torch.float32)
if image.ndim == 2:
image = image.unsqueeze(-1)
image = image / 255.0
depth_inv = (1.0 - depth) * vis_mask
sketch_image = self._render_depth_edges(depth_inv)
cv2.imwrite(
f"v3_depth_inv{self.cnt}.png",
(depth_inv.cpu().numpy() * 255).astype(np.uint8),
)
cos = F.cosine_similarity(
torch.tensor([[0, 0, 1]], device=self.device),
normal.view(-1, 3),
).view_as(normal[..., :1])
cos[cos < np.cos(np.radians(self.bake_angle_thresh))] = 0
# import pdb; pdb.set_trace()
# cv2.imwrite(f"v3_cos{self.cnt}.png", (cos.cpu().numpy() * 255).astype(np.uint8))
# cv2.imwrite(f"v3_sketch{self.cnt}.png", (sketch_image.cpu().numpy() * 255).astype(np.uint8))
# cos2 = cv2.imread(f"v2_cos{self.cnt+1}.png", cv2.IMREAD_GRAYSCALE)
# cos2 = torch.from_numpy(cos2[..., None]).to(self.device).float() / 255
# cos = cos2
self.cnt += 1
k = self.bake_unreliable_kernel_size * 2 + 1
kernel = torch.ones((1, 1, k, k), device=self.device)
vis_mask = vis_mask.permute(2, 0, 1).unsqueeze(0).float()
vis_mask = F.conv2d(
1.0 - vis_mask,
kernel,
padding=k // 2,
)
vis_mask = 1.0 - (vis_mask > 0).float()
vis_mask = vis_mask.squeeze(0).permute(1, 2, 0)
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0)
sketch_image = F.conv2d(sketch_image, kernel, padding=k // 2)
sketch_image = (sketch_image > 0).float()
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0)
vis_mask = vis_mask * (sketch_image < 0.5)
# import pdb; pdb.set_trace()
cv2.imwrite(
f"v3_db_sketch{self.cnt}.png",
(sketch_image.cpu().numpy() * 255).astype(np.uint8),
)
cos[vis_mask == 0] = 0
# import pdb; pdb.set_trace()
# vis_mask = cv2.imread(f"v2_db_mask{self.cnt}.png", cv2.IMREAD_GRAYSCALE)
# vis_mask = torch.from_numpy(vis_mask[..., None]).to(self.device).float() / 255
# cos2 = cv2.imread(f"v2_db_cos{self.cnt}.png", cv2.IMREAD_GRAYSCALE)
# cos2 = torch.from_numpy(cos2[..., None]).to(self.device).float() / 255
# cos = cos2
valid_pixels = (vis_mask != 0).view(-1)
# import pdb; pdb.set_trace()
cv2.imwrite(
f"v3_db_uv{self.cnt}.png",
(uv[..., 0].cpu().numpy() * 255).astype(np.uint8),
)
cv2.imwrite(
f"v3_db_uv2{self.cnt}.png",
(uv[..., 1].cpu().numpy() * 255).astype(np.uint8),
)
cv2.imwrite(
f"v3_db_color{self.cnt}.png",
(image.cpu().numpy() * 255).astype(np.uint8),
)
cv2.imwrite(
f"v3_db_cos{self.cnt}.png",
(cos.cpu().numpy() * 255).astype(np.uint8),
)
cv2.imwrite(
f"v3_db_mask{self.cnt}.png",
(vis_mask.cpu().numpy() * 255).astype(np.uint8),
)
return (
self._scatter_texture(uv, image, valid_pixels),
self._scatter_texture(uv, cos, valid_pixels),
)
def _scatter_texture(self, uv, data, mask):
def __filter_data(data, mask):
return data.view(-1, data.shape[-1])[mask]
return _bilinear_interpolation_scattering(
self.texture_wh[1],
self.texture_wh[0],
__filter_data(uv, mask)[..., [1, 0]],
__filter_data(data, mask),
)
@torch.no_grad()
def fast_bake_texture(
self, textures: list[torch.Tensor], confidence_maps: list[torch.Tensor]
) -> tuple[torch.Tensor, torch.Tensor]:
channel = textures[0].shape[-1]
texture_merge = torch.zeros(self.texture_wh + (channel,)).to(
self.device
)
trust_map_merge = torch.zeros(self.texture_wh + (1,)).to(self.device)
for texture, cos_map in zip(textures, confidence_maps):
view_sum = (cos_map > 0).sum()
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum()
if painted_sum / view_sum > 0.99:
continue
texture_merge += texture * cos_map
trust_map_merge += cos_map
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1e-8)
return texture_merge, trust_map_merge > 1e-8
def uv_inpaint(
self, texture: torch.Tensor, mask: torch.Tensor
) -> np.ndarray:
texture_np = texture.cpu().numpy()
mask_np = (mask.squeeze(-1).cpu().numpy() * 255).astype(np.uint8)
vertices, faces, uv_map = self.get_mesh_attrs()
# import pdb; pdb.set_trace()
texture_np, mask_np = _texture_inpaint_smooth(
texture_np, mask_np, vertices, faces, uv_map
)
texture_np = texture_np.clip(0, 1)
texture_np = cv2.inpaint(
(texture_np * 255).astype(np.uint8),
255 - mask_np,
3,
cv2.INPAINT_NS,
)
return texture_np
def __call__(
self, colors: list[Image.Image], input_mesh: str, output_path: str
) -> trimesh.Trimesh:
self.load_mesh(input_mesh)
textures, weighted_cos_maps = [], []
for color, cam_elev, cam_azim, weight in zip(
colors, self.camera_elevs, self.camera_azims, self.view_weights
):
texture, cos_map = self.back_project(color, cam_elev, cam_azim)
textures.append(texture)
weighted_cos_maps.append(weight * (cos_map**4))
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
texture_np = self.uv_inpaint(texture, mask)
texture_np = post_process_texture(texture_np)
vertices, faces, uv_map = self.get_mesh_attrs(self.scale, self.center)
# import pdb; pdb.set_trace()
textured_mesh = save_mesh_with_mtl(
vertices, faces, uv_map, texture_np, output_path
)
return textured_mesh
def forward(
self,
colors: list[Image.Image],
masks,
depths,
normals,
uvs,
) -> trimesh.Trimesh:
textures, weighted_cos_maps = [], []
for color, mask, depth, normal, uv, weight in zip(
colors, masks, depths, normals, uvs, self.view_weights
):
texture, cos_map = self.back_project2(
color, mask, depth, normal, uv
)
cv2.imwrite(
f"v3_texture{self.cnt}.png",
(texture.cpu().numpy() * 255).astype(np.uint8),
)
cv2.imwrite(
f"v3_texture_cos{self.cnt}.png",
(cos_map.cpu().numpy() * 255).astype(np.uint8),
)
textures.append(texture)
weighted_cos_maps.append(weight * (cos_map**4))
texture, mask = self.fast_bake_texture(textures, weighted_cos_maps)
texture_np = self.uv_inpaint(texture, mask)
texture_np = post_process_texture(texture_np)
vertices, faces, uv_map = self.get_mesh_attrs(self.scale, self.center)
# import pdb; pdb.set_trace()
cv2.imwrite("v3_texture_np.png", texture_np)
textured_mesh = save_mesh_with_mtl(
vertices, faces, uv_map, texture_np, output_path
)
return textured_mesh
class Image_Super_Net:
def __init__(self, device="cuda"):
from diffusers import StableDiffusionUpscalePipeline
self.up_pipeline_x4 = StableDiffusionUpscalePipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler",
torch_dtype=torch.float16,
).to(device)
self.up_pipeline_x4.set_progress_bar_config(disable=True)
def __call__(self, image, prompt=""):
with torch.no_grad():
upscaled_image = self.up_pipeline_x4(
prompt=[prompt],
image=image,
num_inference_steps=10,
).images[0]
return upscaled_image
class Image_GANNet:
def __init__(self, outscale: int):
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
self.outscale = outscale
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
self.upsampler = RealESRGANer(
scale=4,
model_path="/horizon-bucket/robot_lab/users/xinjie.wang/weights/super_resolution/RealESRGAN_x4plus.pth", # noqa
model=model,
pre_pad=0,
half=True,
)
def __call__(self, image: Union[Image.Image, np.ndarray]) -> Image.Image:
if isinstance(image, Image.Image):
image = np.array(image)
output, _ = self.upsampler.enhance(image, outscale=self.outscale)
return Image.fromarray(output)
if __name__ == "__main__":
device = "cuda"
color_path = "outputs/texture_mesh_gen/multi_view/color_sample0.png"
mesh_path = "outputs/texture_mesh_gen/texture_mesh/kettle_color.glb"
output_path = "robot_test_v6/robot.obj"
target_image_size = (2048, 2048)
super_model = Image_GANNet(outscale=4)
multiviews = get_images_from_file(color_path, img_size=512)
multiviews = [super_model(img) for img in multiviews]
multiviews = [img.convert("RGB") for img in multiviews]
from asset3d_gen.data.utils import (
CameraSetting,
init_kal_camera,
DiffrastRender,
)
import nvdiffrast.torch as dr
camera_params = CameraSetting(
num_images=6,
elevation=[20.0, -10.0],
distance=5,
resolution_hw=(2048, 2048),
fov=math.radians(30),
device="cuda",
)
camera = init_kal_camera(camera_params)
mv = camera.view_matrix() # (n 4 4) world2cam
p = camera.intrinsics.projection_matrix()
# NOTE: add a negative sign at P[0, 2] as the y axis is flipped in `nvdiffrast` output. # noqa
p[:, 1, 1] = -p[:, 1, 1]
renderer = DiffrastRender(
p_matrix=p,
mv_matrix=mv,
resolution_hw=camera_params.resolution_hw,
context=dr.RasterizeCudaContext(),
mask_thresh=0.5,
grad_db=False,
device=camera_params.device,
antialias_mask=True,
)
mesh = trimesh.load(mesh_path)
if isinstance(mesh, trimesh.Scene):
mesh = mesh.dump(concatenate=True)
mesh.vertices, scale, center = normalize_vertices_array(mesh.vertices)
vmapping, indices, uvs = xatlas.parametrize(mesh.vertices, mesh.faces)
uvs[:, 1] = 1 - uvs[:, 1]
mesh.vertices = mesh.vertices[vmapping]
mesh.faces = indices
mesh.visual.uv = uvs
vertices = torch.from_numpy(mesh.vertices).to(camera_params.device).float()
faces = (
torch.from_numpy(mesh.faces).to(camera_params.device).to(torch.int64)
)
uvs = torch.from_numpy(mesh.visual.uv).to(camera_params.device).float()
rendered_view_normals = []
rast, vertices_clip = renderer.compute_dr_raster(vertices, faces)
for idx in range(len(mv)):
pos_cam = transform_vertices(mv[idx], vertices, keepdim=True)
pos_cam = pos_cam[:, :3] / pos_cam[:, 3:]
v0, v1, v2 = (pos_cam[faces[:, i]] for i in range(3))
face_norm = F.normalize(torch.cross(v1 - v0, v2 - v0, dim=-1), dim=-1)
vertex_norm = (
torch.from_numpy(
trimesh.geometry.mean_vertex_normals(
len(pos_cam), faces.cpu(), face_norm.cpu()
)
)
.to(camera_params.device)
.contiguous()
)
im_base_normals, _ = dr.interpolate(
vertex_norm[None, ...].float(),
rast[idx : idx + 1],
faces.to(torch.int32),
)
rendered_view_normals.append(im_base_normals)
rendered_view_normals = torch.cat(rendered_view_normals, dim=0)
rendered_depth, masks = renderer.render_depth(vertices, faces)
norm_depths = []
for idx in range(len(rendered_depth)):
norm_depth = renderer.normalize_map_by_mask(
rendered_depth[idx : idx + 1], masks[idx : idx + 1]
)
norm_depths.append(norm_depth)
norm_depths = torch.cat(norm_depths, dim=0)
render_uvs, _ = renderer.render_uv(vertices, faces, uvs)
for index in range(6):
cv2.imwrite(
f"v3_mask{index}.png",
(masks[index] * 255).cpu().numpy().astype(np.uint8),
)
cv2.imwrite(
f"v3_normalv2{index}.png",
(rendered_view_normals[index] * 255)
.cpu()
.numpy()
.astype(np.uint8)[..., ::-1],
)
cv2.imwrite(
f"v3_depth{index}.png",
(norm_depths[index] * 255).cpu().numpy().astype(np.uint8),
)
cv2.imwrite(
f"v3_uv{index}.png",
(render_uvs[index, ..., 0] * 255).cpu().numpy().astype(np.uint8),
)
multiviews[index].save(f"v3_color{index}.png")
texture_backer = TextureBacker(
camera_elevs=[20, 20, 20, -10, -10, -10],
camera_azims=[-180, -60, 60, -120, 0, 120],
view_weights=[1, 0.2, 0.2, 0.2, 1, 0.2],
camera_distance=5,
camera_fov=30,
render_wh=(2048, 2048),
texture_wh=(2048, 2048),
)
texture_backer.vertices = vertices
texture_backer.faces = faces
uvs[:, 1] = 1.0 - uvs[:, 1]
texture_backer.uv_map = uvs
texture_backer.center = center
texture_backer.scale = scale
textured_mesh = texture_backer.forward(
multiviews, masks, norm_depths, rendered_view_normals, render_uvs
)
# multiviews = [super_model(img) for img in multiviews]
# multiviews = [img.convert("RGB") for img in multiviews]
# textured_mesh = texture_backer(multiviews, mesh_path, output_path)