ImgRoboAssetGen / app.py
xinjie.wang
update
37b4bf9
raw
history blame
2.18 kB
import os
import shutil
import spaces
import gradio as gr
from gradio_litmodel3d import LitModel3D
TMP_DIR = os.path.join(
os.path.dirname(os.path.abspath(__file__)), "sessions/imageto3d"
)
os.makedirs(TMP_DIR, exist_ok=True)
# RBG_REMOVER = RembgRemover()
# SAM_PREDICTOR = SAMPredictor(model_type="vit_h")
# DELIGHT = DelightingModel()
# IMAGESR_MODEL = ImageRealESRGAN(outscale=4)
# PIPELINE = TrellisImageTo3DPipeline.from_pretrained(
# "JeffreyXiang/TRELLIS-image-large"
# )
# # PIPELINE.cuda()
# IMAGE_BUFFER = {}
# SEG_CHECKER = ImageSegChecker(GPT_CLIENT)
# GEO_CHECKER = MeshGeoChecker(GPT_CLIENT)
# AESTHETIC_CHECKER = ImageAestheticChecker()
# CHECKERS = [GEO_CHECKER, SEG_CHECKER, AESTHETIC_CHECKER]
# URDF_CONVERTOR = URDFGenerator(GPT_CLIENT, render_view_num=4)
def start_session(req: gr.Request) -> None:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request) -> None:
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if os.path.exists(user_dir):
shutil.rmtree(user_dir)
@spaces.GPU
def greet(n):
print(zero.device) # <-- 'cuda:0' πŸ€—
return f"Hello {zero + n} Tensor"
with gr.Blocks(
delete_cache=(43200, 43200)
) as demo:
with gr.Column():
video_output = gr.Video(
label="Generated 3D Asset",
autoplay=True,
loop=True,
height=300,
interactive=False
)
model_output_gs = gr.Model3D(
label="Gaussian Representation", height=300, interactive=False
)
aligned_gs = gr.Textbox(visible=False)
# model_output_mesh = LitModel3D(
# # label="Mesh Representation",
# # height=300,
# # exposure=10,
# # interactive=False
# )
model_output_mesh = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
gr.Markdown(
""" The rendering of `Gaussian Representation` takes additional 10s. """ # noqa
)
demo.load(start_session)
demo.unload(end_session)
if __name__ == "__main__":
demo.launch()