Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,581 Bytes
55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
import argparse
import logging
import math
import os
import cv2
import numpy as np
import torch
from tqdm import tqdm
from asset3d_gen.data.utils import (
CameraSetting,
init_kal_camera,
normalize_vertices_array,
)
from asset3d_gen.models.gs_model import GaussianOperator
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Render GS color images")
parser.add_argument(
"--input_gs", type=str, help="Input render GS.ply path."
)
parser.add_argument(
"--output_path",
type=str,
help="Output grid image path for rendered GS color images.",
)
parser.add_argument(
"--num_images", type=int, default=6, help="Number of images to render."
)
parser.add_argument(
"--elevation",
type=float,
nargs="+",
default=[20.0, -10.0],
help="Elevation angles for the camera (default: [20.0, -10.0])",
)
parser.add_argument(
"--distance",
type=float,
default=5,
help="Camera distance (default: 5)",
)
parser.add_argument(
"--resolution_hw",
type=int,
nargs=2,
default=(512, 512),
help="Resolution of the output images (default: (512, 512))",
)
parser.add_argument(
"--fov",
type=float,
default=30,
help="Field of view in degrees (default: 30)",
)
parser.add_argument(
"--device",
type=str,
choices=["cpu", "cuda"],
default="cuda",
help="Device to run on (default: `cuda`)",
)
parser.add_argument(
"--image_size",
type=int,
default=512,
help="Output image size for single view in color grid (default: 512)",
)
args = parser.parse_args()
return args
def load_gs_model(
input_gs: str, pre_quat: list[float] = [0.0, 0.7071, 0.0, -0.7071]
) -> GaussianOperator:
gs_model = GaussianOperator.load_from_ply(input_gs)
# Normalize vertices to [-1, 1], center to (0, 0, 0).
_, scale, center = normalize_vertices_array(gs_model._means)
scale, center = float(scale), center.tolist()
transpose = [*[-v for v in center], *pre_quat]
instance_pose = torch.tensor(transpose).to(gs_model.device)
gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
gs_model.rescale(scale)
return gs_model
def entrypoint(input_gs: str = None, output_path: str = None) -> None:
args = parse_args()
if isinstance(input_gs, str):
args.input_gs = input_gs
if isinstance(output_path, str):
args.output_path = output_path
# Setup camera parameters
camera_params = CameraSetting(
num_images=args.num_images,
elevation=args.elevation,
distance=args.distance,
resolution_hw=args.resolution_hw,
fov=math.radians(args.fov),
device=args.device,
)
camera = init_kal_camera(camera_params)
matrix_mv = camera.view_matrix() # (n_cam 4 4) world2cam
matrix_mv[:, :3, 3] = -matrix_mv[:, :3, 3]
w2cs = matrix_mv.to(camera_params.device)
c2ws = [torch.linalg.inv(matrix) for matrix in w2cs]
Ks = torch.tensor(camera_params.Ks).to(camera_params.device)
# Load GS model and normalize.
gs_model = load_gs_model(args.input_gs, pre_quat=[0.0, 0.0, 1.0, 0.0])
# Render GS color images.
images = []
for idx in tqdm(range(len(c2ws)), desc="Rendering GS"):
result = gs_model.render(
c2ws[idx],
Ks=Ks,
image_width=camera_params.resolution_hw[1],
image_height=camera_params.resolution_hw[0],
)
color = cv2.resize(
result.rgba,
(args.image_size, args.image_size),
interpolation=cv2.INTER_AREA,
)
images.append(color)
# Cat color images into grid image and save.
select_idxs = [[0, 2, 1], [5, 4, 3]] # fix order for 6 views
grid_image = []
for row_idxs in select_idxs:
row_image = []
for row_idx in row_idxs:
row_image.append(images[row_idx])
row_image = np.concatenate(row_image, axis=1)
grid_image.append(row_image)
grid_image = np.concatenate(grid_image, axis=0)
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
cv2.imwrite(args.output_path, grid_image)
logger.info(f"Saved grid image to {args.output_path}")
if __name__ == "__main__":
entrypoint()
|