File size: 4,581 Bytes
55ed985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import argparse
import logging
import math
import os

import cv2
import numpy as np
import torch
from tqdm import tqdm
from asset3d_gen.data.utils import (
    CameraSetting,
    init_kal_camera,
    normalize_vertices_array,
)
from asset3d_gen.models.gs_model import GaussianOperator

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)


def parse_args():
    parser = argparse.ArgumentParser(description="Render GS color images")

    parser.add_argument(
        "--input_gs", type=str, help="Input render GS.ply path."
    )
    parser.add_argument(
        "--output_path",
        type=str,
        help="Output grid image path for rendered GS color images.",
    )
    parser.add_argument(
        "--num_images", type=int, default=6, help="Number of images to render."
    )
    parser.add_argument(
        "--elevation",
        type=float,
        nargs="+",
        default=[20.0, -10.0],
        help="Elevation angles for the camera (default: [20.0, -10.0])",
    )
    parser.add_argument(
        "--distance",
        type=float,
        default=5,
        help="Camera distance (default: 5)",
    )
    parser.add_argument(
        "--resolution_hw",
        type=int,
        nargs=2,
        default=(512, 512),
        help="Resolution of the output images (default: (512, 512))",
    )
    parser.add_argument(
        "--fov",
        type=float,
        default=30,
        help="Field of view in degrees (default: 30)",
    )
    parser.add_argument(
        "--device",
        type=str,
        choices=["cpu", "cuda"],
        default="cuda",
        help="Device to run on (default: `cuda`)",
    )
    parser.add_argument(
        "--image_size",
        type=int,
        default=512,
        help="Output image size for single view in color grid (default: 512)",
    )

    args = parser.parse_args()

    return args


def load_gs_model(
    input_gs: str, pre_quat: list[float] = [0.0, 0.7071, 0.0, -0.7071]
) -> GaussianOperator:
    gs_model = GaussianOperator.load_from_ply(input_gs)
    # Normalize vertices to [-1, 1], center to (0, 0, 0).
    _, scale, center = normalize_vertices_array(gs_model._means)
    scale, center = float(scale), center.tolist()
    transpose = [*[-v for v in center], *pre_quat]
    instance_pose = torch.tensor(transpose).to(gs_model.device)
    gs_model = gs_model.get_gaussians(instance_pose=instance_pose)
    gs_model.rescale(scale)

    return gs_model


def entrypoint(input_gs: str = None, output_path: str = None) -> None:
    args = parse_args()
    if isinstance(input_gs, str):
        args.input_gs = input_gs
    if isinstance(output_path, str):
        args.output_path = output_path

    # Setup camera parameters
    camera_params = CameraSetting(
        num_images=args.num_images,
        elevation=args.elevation,
        distance=args.distance,
        resolution_hw=args.resolution_hw,
        fov=math.radians(args.fov),
        device=args.device,
    )
    camera = init_kal_camera(camera_params)
    matrix_mv = camera.view_matrix()  # (n_cam 4 4) world2cam
    matrix_mv[:, :3, 3] = -matrix_mv[:, :3, 3]
    w2cs = matrix_mv.to(camera_params.device)
    c2ws = [torch.linalg.inv(matrix) for matrix in w2cs]
    Ks = torch.tensor(camera_params.Ks).to(camera_params.device)

    # Load GS model and normalize.
    gs_model = load_gs_model(args.input_gs, pre_quat=[0.0, 0.0, 1.0, 0.0])

    # Render GS color images.
    images = []
    for idx in tqdm(range(len(c2ws)), desc="Rendering GS"):
        result = gs_model.render(
            c2ws[idx],
            Ks=Ks,
            image_width=camera_params.resolution_hw[1],
            image_height=camera_params.resolution_hw[0],
        )
        color = cv2.resize(
            result.rgba,
            (args.image_size, args.image_size),
            interpolation=cv2.INTER_AREA,
        )
        images.append(color)

    # Cat color images into grid image and save.
    select_idxs = [[0, 2, 1], [5, 4, 3]]  # fix order for 6 views
    grid_image = []
    for row_idxs in select_idxs:
        row_image = []
        for row_idx in row_idxs:
            row_image.append(images[row_idx])
        row_image = np.concatenate(row_image, axis=1)
        grid_image.append(row_image)

    grid_image = np.concatenate(grid_image, axis=0)
    os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
    cv2.imwrite(args.output_path, grid_image)
    logger.info(f"Saved grid image to {args.output_path}")


if __name__ == "__main__":
    entrypoint()