Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,548 Bytes
55ed985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import json
import logging
import os
import random
from typing import Any, Callable, Dict, List, Tuple, Union
import torch
import torch.utils.checkpoint
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
from torchvision import transforms
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(message)s", level=logging.INFO
)
logger = logging.getLogger(__name__)
__all__ = [
"Asset3dGenDataset",
]
class Asset3dGenDataset(Dataset):
def __init__(
self,
index_file: str,
target_hw: Tuple[int, int],
transform: Callable = None,
control_transform: Callable = None,
max_train_samples: int = None,
sub_idxs: List[List[int]] = None,
seed: int = 79,
) -> None:
if not os.path.exists(index_file):
raise FileNotFoundError(f"{index_file} index_file not found.")
self.index_file = index_file
self.target_hw = target_hw
self.transform = transform
self.control_transform = control_transform
self.max_train_samples = max_train_samples
self.meta_info = self.prepare_data_index(index_file)
self.data_list = sorted(self.meta_info.keys())
self.sub_idxs = sub_idxs # sub_idxs [[0,1,2], [3,4,5], [...], ...]
self.image_num = 6 # hardcode temp.
random.seed(seed)
logger.info(f"Trainset: {len(self)} asset3d instances.")
def __len__(self) -> int:
return len(self.meta_info)
def prepare_data_index(self, index_file: str) -> Dict[str, Any]:
with open(index_file, "r") as fin:
meta_info = json.load(fin)
meta_info_filtered = dict()
for idx, uid in enumerate(meta_info):
if "status" not in meta_info[uid]:
continue
if meta_info[uid]["status"] != "success":
continue
if self.max_train_samples and idx >= self.max_train_samples:
break
meta_info_filtered[uid] = meta_info[uid]
logger.info(
f"Load {len(meta_info)} assets, keep {len(meta_info_filtered)} valids." # noqa
)
return meta_info_filtered
def fetch_sample_images(
self,
uid: str,
attrs: List[str],
sub_index: int = None,
transform: Callable = None,
) -> torch.Tensor:
sample = self.meta_info[uid]
images = []
for attr in attrs:
item = sample[attr]
if sub_index is not None:
item = item[sub_index]
mode = "L" if attr == "image_mask" else "RGB"
image = Image.open(item).convert(mode)
if transform is not None:
image = transform(image)
if len(image.shape) == 2:
image = image[..., None]
images.append(image)
images = torch.cat(images, dim=0)
return images
def fetch_sample_grid_images(
self,
uid: str,
attrs: List[str],
sub_idxs: List[List[int]],
transform: Callable = None,
) -> torch.Tensor:
assert transform is not None
grid_image = []
for row_idxs in sub_idxs:
row_image = []
for row_idx in row_idxs:
image = self.fetch_sample_images(
uid, attrs, row_idx, transform
)
row_image.append(image)
row_image = torch.cat(row_image, dim=2) # (c h w)
grid_image.append(row_image)
grid_image = torch.cat(grid_image, dim=1)
return grid_image
def compute_text_embeddings(
self, embed_path: str, original_size: Tuple[int, int]
) -> Dict[str, nn.Module]:
data_dict = torch.load(embed_path)
prompt_embeds = data_dict["prompt_embeds"][0]
add_text_embeds = data_dict["pooled_prompt_embeds"][0]
# Need changed if random crop, set as crop_top_left [y1, x1], center crop as [0, 0]. # noqa
crops_coords_top_left = (0, 0)
add_time_ids = list(
original_size + crops_coords_top_left + self.target_hw
)
add_time_ids = torch.tensor([add_time_ids])
# add_time_ids = add_time_ids.repeat((len(add_text_embeds), 1))
unet_added_cond_kwargs = {
"text_embeds": add_text_embeds,
"time_ids": add_time_ids,
}
return {"prompt_embeds": prompt_embeds, **unet_added_cond_kwargs}
def visualize_item(
self,
control: torch.Tensor,
color: torch.Tensor,
save_dir: str = None,
) -> List[Image.Image]:
to_pil = transforms.ToPILImage()
color = (color + 1) / 2
color_pil = to_pil(color)
normal_pil = to_pil(control[0:3])
position_pil = to_pil(control[3:6])
mask_pil = to_pil(control[6:])
if save_dir is not None:
os.makedirs(save_dir, exist_ok=True)
color_pil.save(f"{save_dir}/rgb.jpg")
normal_pil.save(f"{save_dir}/normal.jpg")
position_pil.save(f"{save_dir}/position.jpg")
mask_pil.save(f"{save_dir}/mask.jpg")
logger.info(f"Visualization in {save_dir}")
return normal_pil, position_pil, mask_pil, color_pil
def __getitem__(self, index: int) -> Dict[str, torch.Tensor]:
uid = self.data_list[index]
sub_idxs = self.sub_idxs
if sub_idxs is None:
sub_idxs = [[random.randint(0, self.image_num - 1)]]
input_image = self.fetch_sample_grid_images(
uid,
attrs=["image_view_normal", "image_position", "image_mask"],
sub_idxs=sub_idxs,
transform=self.control_transform,
)
assert input_image.shape[1:] == self.target_hw
output_image = self.fetch_sample_grid_images(
uid,
attrs=["image_color"],
sub_idxs=sub_idxs,
transform=self.transform,
)
sample = self.meta_info[uid]
text_feats = self.compute_text_embeddings(
sample["text_feat"], tuple(sample["image_hw"])
)
data = dict(
pixel_values=output_image,
conditioning_pixel_values=input_image,
prompt_embeds=text_feats["prompt_embeds"],
text_embeds=text_feats["text_embeds"],
time_ids=text_feats["time_ids"],
)
return data
if __name__ == "__main__":
index_file = "/horizon-bucket/robot_lab/users/xinjie.wang/datasets/objaverse/v1.0/statistics_1.0_gobjaverse_filter/view6s_v4/meta_ac2e0ddea8909db26d102c8465b5bcb2.json" # noqa
target_hw = (512, 512)
transform_list = [
transforms.Resize(
target_hw, interpolation=transforms.InterpolationMode.BILINEAR
),
transforms.CenterCrop(target_hw),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
image_transform = transforms.Compose(transform_list)
control_transform = transforms.Compose(transform_list[:-1])
sub_idxs = [[0, 1, 2], [3, 4, 5]] # None
if sub_idxs is not None:
target_hw = (
target_hw[0] * len(sub_idxs),
target_hw[1] * len(sub_idxs[0]),
)
dataset = Asset3dGenDataset(
index_file,
target_hw,
image_transform,
control_transform,
sub_idxs=sub_idxs,
)
data = dataset[0]
dataset.visualize_item(
data["conditioning_pixel_values"], data["pixel_values"], save_dir="./"
)
|