import gradio as gr import os os.system("pip install transformers>=4.37.0") def greet(name): f = hello() return f def hello(): from transformers import AutoModelForCausalLM, AutoTokenizer # Using pandas to read some structured data import pandas as pd from io import StringIO # single table EXAMPLE_CSV_CONTENT = """ "Loss","Date","Score","Opponent","Record","Attendance" "Hampton (14–12)","September 25","8–7","Padres","67–84","31,193" "Speier (5–3)","September 26","3–1","Padres","67–85","30,711" "Elarton (4–9)","September 22","3–1","@ Expos","65–83","9,707" "Lundquist (0–1)","September 24","15–11","Padres","67–83","30,774" "Hampton (13–11)","September 6","9–5","Dodgers","61–78","31,407" """ csv_file = StringIO(EXAMPLE_CSV_CONTENT) df = pd.read_csv(csv_file) model_name = "tablegpt/TableGPT2-7B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) example_prompt_template = """Given access to several pandas dataframes, write the Python code to answer the user's question. /* "{var_name}.head(5).to_string(index=False)" as follows: {df_info} */ Question: {user_question} """ question = "哪些比赛的战绩达到了40胜40负?" prompt = example_prompt_template.format( var_name="df", df_info=df.head(5).to_string(index=False), user_question=question, ) messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate(**model_inputs, max_new_tokens=512) generated_ids = [ output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()