Spaces:
Running
on
Zero
Running
on
Zero
| import matplotlib | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from PIL.Image import Resampling | |
| from torchvision.transforms import InterpolationMode | |
| from torchvision.transforms.functional import resize | |
| import cv2 | |
| import re | |
| def load_pfm(file): | |
| color = None | |
| width = None | |
| height = None | |
| scale = None | |
| data_type = None | |
| header = file.readline().decode('UTF-8').rstrip() | |
| if header == 'PF': | |
| color = True | |
| elif header == 'Pf': | |
| color = False | |
| else: | |
| raise Exception('Not a PFM file.') | |
| dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8')) | |
| if dim_match: | |
| width, height = map(int, dim_match.groups()) | |
| else: | |
| raise Exception('Malformed PFM header.') | |
| # scale = float(file.readline().rstrip()) | |
| scale = float((file.readline()).decode('UTF-8').rstrip()) | |
| if scale < 0: # little-endian | |
| data_type = '<f' | |
| else: | |
| data_type = '>f' # big-endian | |
| data_string = file.read() | |
| data = np.fromstring(data_string, data_type) | |
| shape = (height, width, 3) if color else (height, width) | |
| data = np.reshape(data, shape) | |
| data = cv2.flip(data, 0) | |
| return data | |
| # norm / 2 + 0.5 | |
| def depth_scale_shift_normalization(depth, low_percent=2, high_percent=98): | |
| bsz = depth.shape[0] | |
| depth_ = depth[:,0,:,:].reshape(bsz,-1).cpu().numpy() | |
| min_value = torch.from_numpy(np.percentile(a=depth_,q=low_percent,axis=1)).to(depth)[...,None,None,None] | |
| max_value = torch.from_numpy(np.percentile(a=depth_,q=high_percent,axis=1)).to(depth)[...,None,None,None] | |
| normalized_depth = ((depth - min_value)/(max_value-min_value+1e-5) - 0.5) * 2 | |
| normalized_depth = torch.clip(normalized_depth, -1., 1.) | |
| return normalized_depth | |
| def norm_to_rgb(norm): | |
| # norm: (3, H, W), range from [-1, 1] | |
| # norm = norm[::-1, :, :] # For visualization | |
| # norm_rgb = ((norm + 1) * 0.5) * 255.0 | |
| norm_rgb = ((norm + 1.0) / 2.0 * 255.0).astype(np.uint8) | |
| # norm_rgb = norm * 255 | |
| norm_rgb = np.clip(norm_rgb, a_min=0, a_max=255) | |
| norm_rgb = norm_rgb.astype(np.uint8) | |
| return norm_rgb | |
| def colorize_depth_maps( | |
| depth_map, min_depth=None, max_depth=None, cmap="Spectral", valid_mask=None | |
| ): | |
| """ | |
| Colorize depth maps. | |
| """ | |
| assert len(depth_map.shape) >= 2, "Invalid dimension" | |
| if isinstance(depth_map, torch.Tensor): | |
| depth = depth_map.detach().clone().squeeze().cpu().numpy() | |
| elif isinstance(depth_map, np.ndarray): | |
| depth = depth_map.copy().squeeze() | |
| # reshape to [ (B,) H, W ] | |
| if depth.ndim < 3: | |
| depth = depth[np.newaxis, :, :] | |
| # colorize | |
| cm = matplotlib.colormaps[cmap] | |
| # if min_depth is None or max_depth is None: | |
| # if cmap == "magma_r": | |
| # min_depth = np.percentile(depth, 2) | |
| # max_depth = np.percentile(depth, 85) | |
| # elif cmap == "Spectral": | |
| # min_depth = np.percentile(depth, 2) | |
| # max_depth = np.percentile(depth, 98) | |
| if min_depth != max_depth: | |
| depth = ((depth - min_depth) / (max_depth - min_depth)).clip(0, 1) | |
| else: | |
| # Avoid 0-division | |
| depth = depth * 0. | |
| img_colored_np = cm(depth, bytes=False)[:, :, :, 0:3] # value from 0 to 1 | |
| img_colored_np = np.rollaxis(img_colored_np, 3, 1) | |
| if valid_mask is not None: | |
| if isinstance(depth_map, torch.Tensor): | |
| valid_mask = valid_mask.detach().numpy() | |
| valid_mask = valid_mask.squeeze() # [H, W] or [B, H, W] | |
| if valid_mask.ndim < 3: | |
| valid_mask = valid_mask[np.newaxis, np.newaxis, :, :] | |
| else: | |
| valid_mask = valid_mask[:, np.newaxis, :, :] | |
| valid_mask = np.repeat(valid_mask, 3, axis=1) | |
| img_colored_np[~valid_mask] = 0 | |
| if isinstance(depth_map, torch.Tensor): | |
| img_colored = torch.from_numpy(img_colored_np).float() | |
| elif isinstance(depth_map, np.ndarray): | |
| img_colored = img_colored_np | |
| return img_colored | |
| def chw2hwc(chw): | |
| assert 3 == len(chw.shape) | |
| if isinstance(chw, torch.Tensor): | |
| hwc = torch.permute(chw, (1, 2, 0)) | |
| elif isinstance(chw, np.ndarray): | |
| hwc = np.moveaxis(chw, 0, -1) | |
| return hwc | |
| def resize_max_res_torch( | |
| img: torch.Tensor, | |
| max_edge_resolution: int, | |
| resample_method: InterpolationMode = InterpolationMode.BILINEAR, | |
| ) -> torch.Tensor: | |
| """ | |
| Resize image to limit maximum edge length while keeping aspect ratio. | |
| Args: | |
| img (`torch.Tensor`): | |
| Image tensor to be resized. | |
| max_edge_resolution (`int`): | |
| Maximum edge length (pixel). | |
| resample_method (`PIL.Image.Resampling`): | |
| Resampling method used to resize images. | |
| Returns: | |
| `torch.Tensor`: Resized image. | |
| """ | |
| assert 3 == img.dim() | |
| _, original_height, original_width = img.shape | |
| downscale_factor = min( | |
| max_edge_resolution / original_width, max_edge_resolution / original_height | |
| ) | |
| new_width = int(original_width * downscale_factor) | |
| new_height = int(original_height * downscale_factor) | |
| round_num = 16 | |
| new_width = round(new_width / round_num) * round_num | |
| new_height = round(new_height / round_num) * round_num | |
| resized_img = resize(img, (new_height, new_width), resample_method, antialias=True) | |
| return resized_img | |
| def resize_max_res(img: Image.Image, max_edge_resolution: int, resample_method=Resampling.BILINEAR) -> Image.Image: | |
| """ | |
| Resize image to limit maximum edge length while keeping aspect ratio | |
| Args: | |
| img (Image.Image): Image to be resized | |
| max_edge_resolution (int): Maximum edge length (px). | |
| Returns: | |
| Image.Image: Resized image. | |
| """ | |
| # import pdb;pdb.set_trace() | |
| if isinstance(img, torch.Tensor): | |
| return resize_max_res_torch(img, max_edge_resolution, resample_method) | |
| original_width, original_height = img.size | |
| downscale_factor = min( | |
| max_edge_resolution / original_width, max_edge_resolution / original_height | |
| ) | |
| new_width = int(original_width * downscale_factor) | |
| new_height = int(original_height * downscale_factor) | |
| resized_img = img.resize((new_width, new_height), resample=resample_method) | |
| return resized_img | |
| def get_pil_resample_method(method_str: str) -> Resampling: | |
| resample_method_dict = { | |
| "bilinear": Resampling.BILINEAR, | |
| "bicubic": Resampling.BICUBIC, | |
| "nearest": Resampling.NEAREST, | |
| } | |
| resample_method = resample_method_dict.get(method_str, None) | |
| if resample_method is None: | |
| raise ValueError(f"Unknown resampling method: {resample_method}") | |
| else: | |
| return resample_method | |
| def get_tv_resample_method(method_str: str) -> InterpolationMode: | |
| resample_method_dict = { | |
| "bilinear": InterpolationMode.BILINEAR, | |
| "bicubic": InterpolationMode.BICUBIC, | |
| # "nearest": InterpolationMode.NEAREST_EXACT, | |
| } | |
| resample_method = resample_method_dict.get(method_str, None) | |
| if resample_method is None: | |
| raise ValueError(f"Unknown resampling method: {resample_method}") | |
| else: | |
| return resample_method | |
| def create_point_cloud(depth_map, camera_matrix, extrinsic_matrix): | |
| """Create point cloud from depth map and camera parameters.""" | |
| # Get shape of depth map | |
| height, width = depth_map.shape | |
| # Create meshgrid for pixel coordinates | |
| x = np.linspace(0, width - 1, width) | |
| y = np.linspace(0, height - 1, height) | |
| x, y = np.meshgrid(x, y) | |
| # Normalize pixel coordinates | |
| normalized_x = (x - camera_matrix[0, 2]) / camera_matrix[0, 0] | |
| normalized_y = (y - camera_matrix[1, 2]) / camera_matrix[1, 1] | |
| normalized_z = np.ones_like(x) | |
| # Homogeneous coordinates in camera frame | |
| depth_map_reshaped = np.repeat(depth_map[:, :, np.newaxis], 3, axis=2) | |
| homogeneous_camera_coords = depth_map_reshaped * np.dstack((normalized_x, | |
| normalized_y, | |
| normalized_z)) | |
| # Add ones to the last dimension | |
| ones = np.ones((height, width, 1)) | |
| homogeneous_camera_coords = np.dstack((homogeneous_camera_coords, ones)) | |
| # Transform points to world coordinates | |
| homogeneous_world_coords = np.dot(homogeneous_camera_coords, | |
| extrinsic_matrix.T) | |
| # Divide by the fourth coordinate (homogeneous normalization) | |
| point_cloud = (homogeneous_world_coords[:, :, :3] / | |
| homogeneous_world_coords[:, :, 3:]) | |
| point_cloud = point_cloud.reshape(-1, 3) | |
| return point_cloud | |
| def write_ply_mask(points,colors,path_ply,mask=None): | |
| if mask is not None: | |
| num = np.sum(mask) | |
| else: | |
| num = points.shape[0] | |
| ply_header = ''' | |
| ply format ascii 1.0 | |
| element vertex {} | |
| property float x | |
| property float y | |
| property float z | |
| property uchar red | |
| property uchar green | |
| property uchar blue | |
| end_header | |
| '''.format(num) | |
| # points.shape[0] | |
| # import ipdb;ipdb.set_trace() | |
| # if mask is not None: | |
| with open(path_ply, 'w') as f: | |
| f.write(ply_header) | |
| for i in range(points.shape[0]): | |
| if mask.reshape(-1)[i]: | |
| f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2], | |
| int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255))) | |
| def write_ply(points,colors,path_ply,mask=None): | |
| if mask is not None: | |
| num = np.sum(mask) | |
| else: | |
| num = points.shape[0] | |
| ply_header = '''ply | |
| format ascii 1.0 | |
| element vertex {} | |
| property float x | |
| property float y | |
| property float z | |
| property uchar red | |
| property uchar green | |
| property uchar blue | |
| end_header | |
| '''.format(num) | |
| with open(path_ply, 'w') as f: | |
| f.write(ply_header) | |
| for i in range(points.shape[0]): | |
| f.write('{} {} {} {} {} {}\n'.format(points[i,0], points[i,1], points[i,2], | |
| int(colors[i, 2]*255), int(colors[i, 1]*255), int(colors[i, 0]*255))) | |
| def Disparity_Normalization(disparity): | |
| min_value = torch.min(disparity) | |
| max_value = torch.max(disparity) | |
| normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2 | |
| return normalized_disparity | |
| def Disparity_Normalization_mask(disparity, min_value, max_value): | |
| normalized_disparity = ((disparity -min_value)/(max_value-min_value+1e-5) - 0.5) * 2 | |
| return normalized_disparity | |
| def resize_max_res_tensor(input_tensor,is_disp=False,recom_resolution=768): | |
| original_H, original_W = input_tensor.shape[2:] | |
| downscale_factor = min(recom_resolution/original_H, | |
| recom_resolution/original_W) | |
| resized_input_tensor = F.interpolate(input_tensor, | |
| scale_factor=downscale_factor,mode='bilinear', | |
| align_corners=False) | |
| if is_disp: | |
| return resized_input_tensor * downscale_factor, downscale_factor | |
| else: | |
| return resized_input_tensor |