Spaces:
Sleeping
Sleeping
[Update]dummydatagen file and assets folder
Browse files- assets/uc_result.csv +6 -0
- dummydatagen.py +159 -0
assets/uc_result.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Method,Chruch,Parachute,Tench,Garbage Turch,Van Gogh,Violence,Illegal Activity,Nudity
|
| 2 |
+
ESD,98.58%,80.97%,93.96%,92.15%,55.78%,44.23%,65.55,6163,17.8
|
| 3 |
+
FMN,88.48%,56.77%,46.60%,45.64%,90.63%,73.46%,131.37,350,17.9
|
| 4 |
+
UCE,98.40%,60.22%,47.71%,94.31%,39.35%,34.67%,182.01,434,5.1
|
| 5 |
+
CA,60.82%,96.01%,92.70%,46.67%,90.11%,81.97%,54.21,734,10.1
|
| 6 |
+
SalUn,86.26%,90.39%,95.08%,86.91%,96.35%,99.59%,61.05,667,30.8
|
dummydatagen.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from datetime import datetime, timedelta
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.express as px
|
| 6 |
+
from plotly.graph_objs import Figure
|
| 7 |
+
|
| 8 |
+
# Dummy data creation
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def dummy_data_for_plot(metrics, num_days=30):
|
| 12 |
+
dates = [datetime.now() - timedelta(days=i) for i in range(num_days)]
|
| 13 |
+
data = []
|
| 14 |
+
|
| 15 |
+
for metric in metrics:
|
| 16 |
+
for date in dates:
|
| 17 |
+
model = f"Model_{metric}"
|
| 18 |
+
score = np.random.uniform(50, 55)
|
| 19 |
+
data.append([date, metric, score, model])
|
| 20 |
+
|
| 21 |
+
df = pd.DataFrame(data, columns=["date", "task", "score", "model"])
|
| 22 |
+
return df
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def create_metric_plot_obj_1(
|
| 26 |
+
df: pd.DataFrame, metrics: list[str], title: str
|
| 27 |
+
) -> Figure:
|
| 28 |
+
"""
|
| 29 |
+
Create a Plotly figure object with lines representing different metrics
|
| 30 |
+
and horizontal dotted lines representing human baselines.
|
| 31 |
+
|
| 32 |
+
:param df: The DataFrame containing the metric values, names, and dates.
|
| 33 |
+
:param metrics: A list of strings representing the names of the metrics
|
| 34 |
+
to be included in the plot.
|
| 35 |
+
:param title: A string representing the title of the plot.
|
| 36 |
+
:return: A Plotly figure object with lines representing metrics and
|
| 37 |
+
horizontal dotted lines representing human baselines.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# Filter the DataFrame based on the specified metrics
|
| 41 |
+
df = df[df["task"].isin(metrics)]
|
| 42 |
+
|
| 43 |
+
# Filter the human baselines based on the specified metrics
|
| 44 |
+
# filtered_human_baselines = {k: v for k, v in HUMAN_BASELINE.items() if k in metrics}
|
| 45 |
+
|
| 46 |
+
# Create a line figure using plotly express with specified markers and custom data
|
| 47 |
+
fig = px.line(
|
| 48 |
+
df,
|
| 49 |
+
x="date",
|
| 50 |
+
y="score",
|
| 51 |
+
color="task",
|
| 52 |
+
markers=True,
|
| 53 |
+
custom_data=["task", "score", "model"],
|
| 54 |
+
title=title,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Update hovertemplate for better hover interaction experience
|
| 58 |
+
fig.update_traces(
|
| 59 |
+
hovertemplate="<br>".join(
|
| 60 |
+
[
|
| 61 |
+
"Model Name: %{customdata[2]}",
|
| 62 |
+
"Metric Name: %{customdata[0]}",
|
| 63 |
+
"Date: %{x}",
|
| 64 |
+
"Metric Value: %{y}",
|
| 65 |
+
]
|
| 66 |
+
)
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Update the range of the y-axis
|
| 70 |
+
fig.update_layout(yaxis_range=[0, 100])
|
| 71 |
+
|
| 72 |
+
# Create a dictionary to hold the color mapping for each metric
|
| 73 |
+
metric_color_mapping = {}
|
| 74 |
+
|
| 75 |
+
# Map each metric name to its color in the figure
|
| 76 |
+
for trace in fig.data:
|
| 77 |
+
metric_color_mapping[trace.name] = trace.line.color
|
| 78 |
+
|
| 79 |
+
# Iterate over filtered human baselines and add horizontal lines to the figure
|
| 80 |
+
# for metric, value in filtered_human_baselines.items():
|
| 81 |
+
# color = metric_color_mapping.get(metric, "blue") # Retrieve color from mapping; default to blue if not found
|
| 82 |
+
# location = "top left" if metric == "HellaSwag" else "bottom left" # Set annotation position
|
| 83 |
+
# # Add horizontal line with matched color and positioned annotation
|
| 84 |
+
# fig.add_hline(
|
| 85 |
+
# y=value,
|
| 86 |
+
# line_dash="dot",
|
| 87 |
+
# annotation_text=f"{metric} human baseline",
|
| 88 |
+
# annotation_position=location,
|
| 89 |
+
# annotation_font_size=10,
|
| 90 |
+
# annotation_font_color=color,
|
| 91 |
+
# line_color=color,
|
| 92 |
+
# )
|
| 93 |
+
|
| 94 |
+
return fig
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def dummydf():
|
| 98 |
+
# data = [{"Model": "gpt-35-turbo-1106",
|
| 99 |
+
# "Agent": "prompt agent",
|
| 100 |
+
# "Opponent Model": "gpt-4",
|
| 101 |
+
# "Opponent Agent": "prompt agent",
|
| 102 |
+
# 'Breakthrough': 0,
|
| 103 |
+
# 'Connect Four': 0,
|
| 104 |
+
# 'Blind Auction': 0,
|
| 105 |
+
# 'Kuhn Poker': 0,
|
| 106 |
+
# "Liar's Dice": 0,
|
| 107 |
+
# 'Negotiation': 0,
|
| 108 |
+
# 'Nim': 0,
|
| 109 |
+
# 'Pig': 0,
|
| 110 |
+
# 'Iterated Prisoners Dilemma': 0,
|
| 111 |
+
# 'Tic-Tac-Toe': 0
|
| 112 |
+
# },
|
| 113 |
+
# {"Model": "Llama-2-70b-chat-hf",
|
| 114 |
+
# "Agent": "prompt agent",
|
| 115 |
+
# "Opponent Model": "gpt-4",
|
| 116 |
+
# "Opponent Agent": "prompt agent",
|
| 117 |
+
# 'Breakthrough': 1,
|
| 118 |
+
# 'Connect Four': 0,
|
| 119 |
+
# 'Blind Auction': 0,
|
| 120 |
+
# 'Kuhn Poker': 0,
|
| 121 |
+
# "Liar's Dice": 0,
|
| 122 |
+
# 'Negotiation': 0,
|
| 123 |
+
# 'Nim': 0,
|
| 124 |
+
# 'Pig': 0,
|
| 125 |
+
# 'Iterated Prisoners Dilemma': 0,
|
| 126 |
+
# 'Tic-Tac-Toe': 0
|
| 127 |
+
# },
|
| 128 |
+
# {"Model": "gpt-35-turbo-1106",
|
| 129 |
+
# "Agent": "ToT agent",
|
| 130 |
+
# "Opponent Model": "gpt-4",
|
| 131 |
+
# "Opponent Agent": "prompt agent",
|
| 132 |
+
# 'Breakthrough': 0,
|
| 133 |
+
# 'Connect Four': 0,
|
| 134 |
+
# 'Blind Auction': 0,
|
| 135 |
+
# 'Kuhn Poker': 0,
|
| 136 |
+
# "Liar's Dice": 0,
|
| 137 |
+
# 'Negotiation': 0,
|
| 138 |
+
# 'Nim': 0,
|
| 139 |
+
# 'Pig': 0,
|
| 140 |
+
# 'Iterated Prisoners Dilemma': 0,
|
| 141 |
+
# 'Tic-Tac-Toe': 0
|
| 142 |
+
# },
|
| 143 |
+
# {"Model": "Llama-2-70b-chat-hf",
|
| 144 |
+
# "Agent": "CoT agent",
|
| 145 |
+
# "Opponent Model": "gpt-4",
|
| 146 |
+
# "Opponent Agent": "prompt agent",
|
| 147 |
+
# 'Breakthrough': 0,
|
| 148 |
+
# 'Connect Four': 0,
|
| 149 |
+
# 'Blind Auction': 0,
|
| 150 |
+
# 'Kuhn Poker': 0,
|
| 151 |
+
# "Liar's Dice": 0,
|
| 152 |
+
# 'Negotiation': 0,
|
| 153 |
+
# 'Nim': 0,
|
| 154 |
+
# 'Pig': 0,
|
| 155 |
+
# 'Iterated Prisoners Dilemma': 0,
|
| 156 |
+
# 'Tic-Tac-Toe': 0
|
| 157 |
+
# }]
|
| 158 |
+
df = pd.read_csv('./assets/uc_result.csv')
|
| 159 |
+
return df
|