KV-Edit / app.py
xilluill's picture
Merge branch 'main' of hf.co:spaces/xilluill/KV-Edit into main
4291344
raw
history blame
9.09 kB
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
from einops import rearrange
from PIL import ExifTags, Image
import torch
import gradio as gr
import numpy as np
from flux.sampling import prepare
from flux.util import (load_ae, load_clip, load_t5)
from models.kv_edit import Flux_kv_edit,Flux_kv_edit_inf
import spaces
from huggingface_hub import login
login(token=os.getenv('Token'))
@dataclass
class SamplingOptions:
source_prompt: str = ''
target_prompt: str = ''
# prompt: str
width: int = 1366
height: int = 768
inversion_num_steps: int = 0
denoise_num_steps: int = 0
skip_step: int = 0
inversion_guidance: float = 1.0
denoise_guidance: float = 1.0
seed: int = 42
re_init: bool = False
attn_mask: bool = False
@torch.inference_mode()
def encode(init_image, torch_device):
init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
init_image = init_image.unsqueeze(0)
init_image = init_image.to(torch_device)
with torch.no_grad():
init_image = ae.encode(init_image.to()).to(torch.bfloat16)
return init_image
# init all components
device = "cuda" if torch.cuda.is_available() else "cpu"
name = 'flux-dev'
ae = load_ae(name, device)
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(device)
model = Flux_kv_edit(device=device, name=name)
offload = False
name = "flux-dev"
is_schnell = False
feature_path = 'feature'
output_dir = 'result'
add_sampling_metadata = True
@spaces.GPU(duration=120)
@torch.inference_mode()
def edit(brush_canvas,
source_prompt, target_prompt,
inversion_num_steps, denoise_num_steps,
skip_step,
inversion_guidance, denoise_guidance,seed,
re_init,attn_mask
):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.cuda.empty_cache()
rgba_init_image = brush_canvas["background"]
init_image = rgba_init_image[:,:,:3]
shape = init_image.shape
height = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
width = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
init_image = init_image[:height, :width, :]
rgba_init_image = rgba_init_image[:height, :width, :]
rgba_mask = brush_canvas["layers"][0][:height, :width, :]
mask = rgba_mask[:,:,3]/255
mask = mask.astype(int)
rgba_mask[:,:,3] = rgba_mask[:,:,3]//2
masked_image = Image.alpha_composite(Image.fromarray(rgba_init_image, 'RGBA'), Image.fromarray(rgba_mask, 'RGBA'))
mask = torch.from_numpy(mask).unsqueeze(0).unsqueeze(0).to(torch.bfloat16).to(device)
init_image = encode(init_image, device).to(device)
seed = int(seed)
if seed == -1:
seed = torch.randint(0, 2**32, (1,)).item()
opts = SamplingOptions(
source_prompt=source_prompt,
target_prompt=target_prompt,
width=width,
height=height,
inversion_num_steps=inversion_num_steps,
denoise_num_steps=denoise_num_steps,
skip_step=skip_step,
inversion_guidance=inversion_guidance,
denoise_guidance=denoise_guidance,
seed=seed,
re_init=re_init,
attn_mask=attn_mask
)
torch.manual_seed(opts.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(opts.seed)
t0 = time.perf_counter()
#############inverse#######################
# 将布尔数组转换为整数类型,如果需要1和0而不是True和False的话
with torch.no_grad():
inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
x = model(inp, inp_target, mask, opts)
device = torch.device("cuda")
with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
x = ae.decode(x)
# 得到还在显卡上的特征
# bring into PIL format and save
x = x.clamp(-1, 1)
# x = embed_watermark(x.float())
x = x.float().cpu()
x = rearrange(x[0], "c h w -> h w c")
if torch.cuda.is_available():
torch.cuda.synchronize()
#############回到像素空间就算结束#######################
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
#############找idx#######################
fn = output_name.format(idx=idx)
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
exif_data[ExifTags.Base.ImageDescription] = source_prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
masked_image.save(fn.replace(".jpg", "_mask.png"), format='PNG')
t1 = time.perf_counter()
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
print("End Edit")
return img
def create_demo(model_name: str):
# editor = FluxEditor_kv_demo()
is_schnell = model_name == "flux-schnell"
title = r"""
<h1 align="center">🎨 KV-Edit: Training-Free Image Editing for Precise Background Preservation</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Xilluill/KV-Edit' target='_blank'><b>KV-Edit: Training-Free Image Editing for Precise Background Preservation</b></a>.<br>
🔔🔔[<b>Important</b>] Editing steps:<br>
1️⃣ Upload your image that needs to be edited (The resolution is expected be less than 1360*768, or the memory of GPU may be not enough.) <br>
2️⃣ Fill in your source prompt and use the brush tool to draw your mask area. <br>
3️⃣ Fill in your target prompt, then adjust the hyperparameters. <br>
4️⃣ Click the "Edit" button to generate your edited image! <br>
"""
article = r"""
If our work is helpful, please help to ⭐ the <a href='https://github.com/Xilluill/KV-Edit' target='_blank'>Github Repo</a>. Thanks!
"""
badge = r"""
[![GitHub Stars](https://img.shields.io/github/stars/Xilluill/KV-Edit)](https://github.com/Xilluill/KV-Edit)
"""
with gr.Blocks() as demo:
gr.HTML(title)
gr.Markdown(description)
gr.Markdown(article)
# gr.Markdown(badge)
with gr.Row():
with gr.Column():
source_prompt = gr.Textbox(label="Source Prompt", value='' )
inversion_num_steps = gr.Slider(1, 50, 28, step=1, label="Number of inversion steps")
target_prompt = gr.Textbox(label="Target Prompt", value='' )
denoise_num_steps = gr.Slider(1, 50, 28, step=1, label="Number of denoise steps")
brush_canvas = gr.ImageEditor(label="Brush Canvas",
sources=('upload'),
brush=gr.Brush(colors=["#ff0000"],color_mode='fixed'),
interactive=True,
transforms=[],
container=True,
format='png',scale=1)
edit_btn = gr.Button("edit")
with gr.Column():
with gr.Accordion("Advanced Options", open=True):
skip_step = gr.Slider(0, 30, 4, step=1, label="Number of skip steps")
inversion_guidance = gr.Slider(1.0, 10.0, 1.5, step=0.1, label="inversion Guidance", interactive=not is_schnell)
denoise_guidance = gr.Slider(1.0, 10.0, 5.5, step=0.1, label="denoise Guidance", interactive=not is_schnell)
seed = gr.Textbox('0', label="Seed (-1 for random)", visible=True)
with gr.Row():
re_init = gr.Checkbox(label="re_init", value=False)
attn_mask = gr.Checkbox(label="attn_mask", value=False)
output_image = gr.Image(label="Generated Image")
edit_btn.click(
fn=edit,
inputs=[brush_canvas,
source_prompt, target_prompt,
inversion_num_steps, denoise_num_steps,
skip_step,
inversion_guidance,
denoise_guidance,seed,
re_init,attn_mask
],
outputs=[output_image]
)
return demo
demo = create_demo("flux-dev")
demo.launch()