File size: 10,899 Bytes
95d4bb7
 
 
 
 
 
 
 
98a244a
95d4bb7
 
 
 
 
 
 
98a244a
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b891da
98a244a
3e0e07e
0f4d2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d1a5da
95d4bb7
 
 
 
9b891da
95d4bb7
 
 
 
7d1a5da
95775e7
7d1a5da
95d4bb7
 
 
 
7d1a5da
 
0f4d2e1
 
7d1a5da
 
95d4bb7
7d1a5da
 
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b891da
 
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e58ce5
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4934d7e
9c8bfe6
ae90f91
7d1a5da
95d4bb7
4934d7e
9b891da
f294907
95d4bb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e53acb2
95d4bb7
e53acb2
95d4bb7
 
 
7d1a5da
95d4bb7
 
7d1a5da
0f4d2e1
95d4bb7
 
 
 
 
 
 
39cb3b9
95d4bb7
 
9b891da
95d4bb7
 
 
 
 
 
 
4934d7e
95d4bb7
 
7d1a5da
95d4bb7
 
 
 
 
9b891da
95d4bb7
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
from einops import rearrange
from PIL import ExifTags, Image
import torch
import gradio as gr
import numpy as np
from flux.sampling import prepare
from flux.util import (load_ae, load_clip, load_t5)
from models.kv_edit import Flux_kv_edit,Flux_kv_edit_inf
import spaces
from huggingface_hub import login
login(token=os.getenv('Token'))

@dataclass
class SamplingOptions:
    source_prompt: str = ''
    target_prompt: str = ''
    # prompt: str
    width: int = 1366
    height: int = 768
    inversion_num_steps: int = 0
    denoise_num_steps: int = 0
    skip_step: int = 0
    inversion_guidance: float = 1.0
    denoise_guidance: float = 1.0
    seed: int = 42
    re_init: bool = False
    attn_mask: bool = False
    attn_scale_value: float = 0.0

def resize_image(image_array, max_width=512, max_height=512):
    # 将numpy数组转换为PIL图像
    if image_array.shape[-1] == 4:
        mode = 'RGBA'
    else:
        mode = 'RGB'
    
    pil_image = Image.fromarray(image_array, mode=mode)
    
    # 获取原始图像的宽度和高度
    original_width, original_height = pil_image.size
    
    # 计算缩放比例
    width_ratio = max_width / original_width
    height_ratio = max_height / original_height
    
    # 选择较小的缩放比例以确保图像不超过最大宽度和高度
    scale_ratio = min(width_ratio, height_ratio)
    
    # 如果图像已经小于或等于最大分辨率,则不进行缩放
    if scale_ratio >= 1:
        return image_array
    
    # 计算新的宽度和高度
    new_width = int(original_width * scale_ratio)
    new_height = int(original_height * scale_ratio)
    
    # 缩放图像
    resized_image = pil_image.resize((new_width, new_height))
    
    # 将PIL图像转换回numpy数组
    resized_array = np.array(resized_image)
    
    return resized_array

@torch.inference_mode()
def encode(init_image, torch_device):
    init_image = torch.from_numpy(init_image).permute(2, 0, 1).float() / 127.5 - 1
    init_image = init_image.unsqueeze(0) 
    init_image = init_image.to(torch_device)
    with torch.no_grad():
        init_image = ae.encode(init_image.to()).to(torch.bfloat16)
    return init_image

# init all components
device = "cuda" if torch.cuda.is_available() else "cpu"
name = 'flux-dev'
ae = load_ae(name, device)
t5 = load_t5(device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(device)
model = Flux_kv_edit(device=device, name=name)
offload = False
name = "flux-dev"
is_schnell = False
feature_path = 'feature'
output_dir = 'result'
add_sampling_metadata = True
    
@spaces.GPU(duration=120)
@torch.inference_mode()
def edit(brush_canvas,
            source_prompt, target_prompt, 
            inversion_num_steps, denoise_num_steps, 
            skip_step, 
            inversion_guidance, denoise_guidance,seed,
            re_init,attn_mask,attn_scale_value
            ):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch.cuda.empty_cache()
    
    rgba_init_image = brush_canvas["background"]
    rgba_init_image = resize_image(rgba_init_image)
    init_image = rgba_init_image[:,:,:3]
    shape = init_image.shape        
    height = shape[0] if shape[0] % 16 == 0 else shape[0] - shape[0] % 16
    width = shape[1] if shape[1] % 16 == 0 else shape[1] - shape[1] % 16
    init_image = init_image[:height, :width, :]
    rgba_init_image = rgba_init_image[:height, :width, :]

    rgba_mask = brush_canvas["layers"][0]
    rgba_mask = resize_image(rgba_mask)[:height, :width, :]
    mask = rgba_mask[:,:,3]/255
    mask = mask.astype(int)
    
    rgba_mask[:,:,3] = rgba_mask[:,:,3]//2
    masked_image = Image.alpha_composite(Image.fromarray(rgba_init_image, 'RGBA'), Image.fromarray(rgba_mask, 'RGBA'))
    mask = torch.from_numpy(mask).unsqueeze(0).unsqueeze(0).to(torch.bfloat16).to(device)
    
    init_image = encode(init_image, device).to(device)
    
    seed = int(seed)
    if seed == -1:
        seed = torch.randint(0, 2**32, (1,)).item()
    opts = SamplingOptions(
        source_prompt=source_prompt,
        target_prompt=target_prompt,
        width=width,
        height=height,
        inversion_num_steps=inversion_num_steps,
        denoise_num_steps=denoise_num_steps,
        skip_step=skip_step,
        inversion_guidance=inversion_guidance,
        denoise_guidance=denoise_guidance,
        seed=seed,
        re_init=re_init,
        attn_mask=attn_mask,
        attn_scale_value = attn_scale_value
    )

        
    torch.manual_seed(opts.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(opts.seed)

    t0 = time.perf_counter()

    #############inverse#######################
    # 将布尔数组转换为整数类型,如果需要1和0而不是True和False的话
    with torch.no_grad():
        inp = prepare(t5, clip, init_image, prompt=opts.source_prompt)
        inp_target = prepare(t5, clip, init_image, prompt=opts.target_prompt)
      
    x = model(inp, inp_target, mask, opts)
    
    device = torch.device("cuda")
    with torch.autocast(device_type=device.type, dtype=torch.bfloat16):
        x = ae.decode(x)
    # 得到还在显卡上的特征
    # bring into PIL format and save
    x = x.clamp(-1, 1)
    # x = embed_watermark(x.float())
    x = x.float().cpu()
    x = rearrange(x[0], "c h w -> h w c")
    
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    #############回到像素空间就算结束#######################
    output_name = os.path.join(output_dir, "img_{idx}.jpg")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        idx = 0
    else:
        fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
        if len(fns) > 0:
            idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
        else:
            idx = 0
    #############找idx#######################
    
    fn = output_name.format(idx=idx)

    img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
    exif_data = Image.Exif()
    exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
    exif_data[ExifTags.Base.Make] = "Black Forest Labs"
    exif_data[ExifTags.Base.Model] = name

    exif_data[ExifTags.Base.ImageDescription] = target_prompt
    img.save(fn, exif=exif_data, quality=95, subsampling=0)
    masked_image.save(fn.replace(".jpg", "_mask.png"),  format='PNG')
    t1 = time.perf_counter()
    print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
    
    print("End Edit")
    return img


    
def create_demo(model_name: str):
    # editor = FluxEditor_kv_demo()
    is_schnell = model_name == "flux-schnell"
    
    title = r"""
        <h1 align="center">🎨 KV-Edit: Training-Free Image Editing for Precise Background Preservation</h1>
        """
        
    description = r"""
        <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Xilluill/KV-Edit' target='_blank'><b>KV-Edit: Training-Free Image Editing for Precise Background Preservation</b></a>.<br>
    
        💫💫 <b>Here is editing steps:</b> (We highly recommend you run our code locally!😘 Only one inversion before multiple editing, very productive!) <br>
        1️⃣ Upload your image that needs to be edited (The resolution will be scaled to less than 1360*768) <br>
        2️⃣ Fill in your source prompt and use the brush tool to cover the area you want to edit (❗️required). <br>
        3️⃣ Fill in your target prompt, then adjust the hyperparameters. <br>
        4️⃣ Click the "Edit" button to generate your edited image! <br>
        
        🔔🔔 [<b>Important</b>] Less skip steps, "re_init" and "attn_mask"  will enhance the editing performance, making the results aligned with your text but may lead to discontinuous images.  <br>
        If you fail because of these three, we recommend trying to increase "attn_scale" to increase attention between mask and background.<br>
        """
    article = r"""
    If our work is helpful, please help to ⭐ the <a href='https://github.com/Xilluill/KV-Edit' target='_blank'>Github Repo</a>. Thanks! 
    """

    badge = r"""
    [![GitHub Stars](https://img.shields.io/github/stars/Xilluill/KV-Edit)](https://github.com/Xilluill/KV-Edit)
    """
    
    with gr.Blocks() as demo:
        gr.HTML(title)
        gr.Markdown(description)
        
        with gr.Row():
            with gr.Column():
                source_prompt = gr.Textbox(label="Source Prompt", value='' )
                inversion_num_steps = gr.Slider(1, 50, 28, step=1, label="Number of inversion steps")
                target_prompt = gr.Textbox(label="Target Prompt", value='' )
                denoise_num_steps = gr.Slider(1, 50, 28, step=1, label="Number of denoise steps")
                brush_canvas = gr.ImageEditor(label="Brush Canvas",
                                                sources=('upload'), 
                                                brush=gr.Brush(colors=["#ff0000"],color_mode='fixed'),
                                                interactive=True,
                                                transforms=[],
                                                container=True,
                                                format='png')
                
                edit_btn = gr.Button("edit")
                
                
            with gr.Column():
                with gr.Accordion("Advanced Options", open=True):

                    skip_step = gr.Slider(0, 30, 0, step=1, label="Number of skip steps")
                    inversion_guidance = gr.Slider(1.0, 10.0, 1.5, step=0.1, label="inversion Guidance", interactive=not is_schnell)
                    denoise_guidance = gr.Slider(1.0, 10.0, 5.5, step=0.1, label="denoise Guidance", interactive=not is_schnell)
                    attn_scale_value = gr.Slider(0.0, 5.0, 1, step=0.1, label="attn_scale")
                    seed = gr.Textbox('0', label="Seed (-1 for random)", visible=True)
                    with gr.Row():
                        re_init = gr.Checkbox(label="re_init", value=False)
                        attn_mask = gr.Checkbox(label="attn_mask", value=False)

                
                output_image = gr.Image(label="Generated Image")
                gr.Markdown(article)
        edit_btn.click(
            fn=edit,
            inputs=[brush_canvas,
                    source_prompt, target_prompt, 
                    inversion_num_steps, denoise_num_steps, 
                    skip_step, 
                    inversion_guidance,
                    denoise_guidance,seed,
                    re_init,attn_mask,attn_scale_value
                    ],
            outputs=[output_image]
        )
    return demo


demo = create_demo("flux-dev")

demo.launch()