LKCell / cell_segmentation /inference /cell_detection_mp.py
qingke1's picture
initial commit
aea73e2
raw
history blame
63 kB
# -*- coding: utf-8 -*-
# CellViT Inference Method for Patch-Wise Inference on a patches test set/Whole WSI
#
# Detect Cells with our Networks
# Patches dataset needs to have the follwoing requirements:
# Patch-Size must be 1024, with overlap of 64
#
# We provide preprocessing code here: ./preprocessing/patch_extraction/main_extraction.py
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
# @ Erik Ylipää, [email protected]
# Linköping University
# Luleå, Sweden
from dataclasses import dataclass
from functools import partial
import inspect
from io import BytesIO
import os
import queue
import sys
import multiprocessing
from multiprocessing.pool import ThreadPool
import zipfile
from time import sleep
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.insert(0, parentdir)
from cellvit.cell_segmentation.utils.post_proc import DetectionCellPostProcessor
import argparse
import logging
import uuid
import warnings
from collections import defaultdict, deque
from pathlib import Path
from typing import Dict, List, Literal, OrderedDict, Tuple, Union, Callable
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import tqdm
import ujson
from einops import rearrange
# from PIL import Image
from shapely import strtree
from shapely.errors import ShapelyDeprecationWarning
from shapely.geometry import Polygon, MultiPolygon
# from skimage.color import rgba2rgb
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms as T
#from torch.profiler import profile, record_function, ProfilerActivity
from cellvit.cell_segmentation.datasets.cell_graph_datamodel import CellGraphDataWSI
from cellvit.cell_segmentation.utils.template_geojson import (
get_template_point,
get_template_segmentation,
)
from cellvit.datamodel.wsi_datamodel import WSI
from cellvit.models.segmentation.cell_segmentation.cellvit import (
CellViT,
CellViT256,
CellViT256Unshared,
CellViTSAM,
CellViTSAMUnshared,
CellViTUnshared,
)
from cellvit.preprocessing.encoding.datasets.patched_wsi_inference import PatchedWSIInference
from cellvit.utils.file_handling import load_wsi_files_from_csv
from cellvit.utils.logger import Logger
from cellvit.utils.tools import unflatten_dict
warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning)
#pandarallel.initialize(progress_bar=False, nb_workers=12)
# color setup
COLOR_DICT = {
1: [255, 0, 0],
2: [34, 221, 77],
3: [35, 92, 236],
4: [254, 255, 0],
5: [255, 159, 68],
}
TYPE_NUCLEI_DICT = {
1: "Neoplastic",
2: "Inflammatory",
3: "Connective",
4: "Dead",
5: "Epithelial",
}
# This file will be used to indicate that a image has been processed
FLAG_FILE_NAME = ".cell_detection_done"
def load_wsi(wsi_path, overwrite=False):
try:
wsi_name = wsi_path.stem
patched_slide_path = Path(configuration["patch_dataset_path"]) / wsi_name
flag_file_path = patched_slide_path / "cell_detection" / FLAG_FILE_NAME
if not overwrite and flag_file_path.exists():
return
wsi_file = WSI(
name=wsi_name,
patient=wsi_name,
slide_path=wsi_path,
patched_slide_path=patched_slide_path,
)
check_wsi(wsi=wsi_file, magnification=configuration["magnification"])
return wsi_file
except BaseException as e:
e.wsi_file = wsi_path
return e
class InferenceWSIDataset(Dataset):
def __init__(self, wsi_filelist, n_workers: int = 0, overwrite=False, transform: Callable = None):
self.wsi_files = []
# This index will contain a repeat of all the wsi objects the number of
# patches they have. This means that it will be as long as the total number
# of patches in all WSI files. One can simply get the desired patch by
# subscripting into this list to get the correct WSI file object and
# pertinent metadata
self.wsi_index = []
self.transform = transform
pb = tqdm.trange(len(wsi_filelist), desc='Loading WSI file list')
already_processed_files = []
if n_workers > 0:
#Since this is mostly and IO-bound task, we use a thread pool
#with multiprocessing.Pool(n_workers) as pool:
with ThreadPool(n_workers) as pool:
load_wsi_partial = partial(load_wsi, overwrite=overwrite)
for wsi_file in pool.imap(load_wsi_partial, wsi_filelist):
if isinstance(wsi_file, BaseException):
logging.warn(f"Could not load file {wsi_file.wsi_file}, caught exception {str(wsi_file)}")
elif wsi_file is None:
already_processed_files.append(wsi_file)
else:
self.wsi_files.append(wsi_file)
n_patches = wsi_file.get_number_patches()
indexing_info = [(wsi_file, i) for i in range(n_patches)]
self.wsi_index.extend(indexing_info)
pb.update()
else:
for wsi_file_path in wsi_filelist:
wsi_file = load_wsi(wsi_file_path, overwrite)
if isinstance(wsi_file, BaseException):
logging.warn(f"Could not load file {wsi_file.wsi_file}, caught exception {str(wsi_file)}")
elif wsi_file is None:
already_processed_files.append(wsi_file)
else:
self.wsi_files.append(wsi_file)
n_patches = wsi_file.get_number_patches()
indexing_info = [(wsi_file, i) for i in range(n_patches)]
self.wsi_index.extend(indexing_info)
pb.update()
def __len__(self):
return len(self.wsi_index)
def __getitem__(self, item):
wsi_file, local_idx = self.wsi_index[item]
patch, metadata = wsi_file.get_patch(local_idx, self.transform)
return patch, local_idx, wsi_file, metadata
def get_n_files(self):
return len(self.wsi_files)
def wsi_patch_collator(batch):
patches, local_idx, wsi_file, metadata = zip(*batch) # Transpose the batch
patches = torch.stack(patches)
return patches, local_idx, wsi_file, metadata
def f_post_processing_worker(wsi_file, wsi_work_list, postprocess_arguments):
local_idxs, predictions_records, metadata = zip(*wsi_work_list)
# Merge the prediction records into a single dictionary again.
predictions = defaultdict(list)
for record in predictions_records:
for k,v in record.items():
predictions[k].append(v)
predictions_stacked = {k: torch.stack(v).to(torch.float32) for k,v in predictions.items()}
postprocess_predictions(predictions_stacked, metadata, wsi_file, postprocess_arguments)
@dataclass
class PostprocessArguments:
n_images: int
num_nuclei_classes: int
dataset_config: Dict
overlap: int
patch_size: int
geojson: bool
subdir_name: str
logger: Logger
n_workers: int = 0
wait_time: float = 2.
def postprocess_predictions(predictions, metadata, wsi, postprocessing_args: PostprocessArguments):
# logger = postprocessing_args.logger
logger = logging.getLogger()
num_nuclei_classes = postprocessing_args.num_nuclei_classes
dataset_config = postprocessing_args.dataset_config
overlap = postprocessing_args.overlap
patch_size = postprocessing_args.patch_size
geojson = postprocessing_args.geojson
subdir_name = postprocessing_args.subdir_name
if subdir_name is not None:
outdir = Path(wsi.patched_slide_path) / "cell_detection" / subdir_name
else:
outdir = Path(wsi.patched_slide_path) / "cell_detection"
outdir.mkdir(exist_ok=True, parents=True)
outfile = outdir / "cell_detection.zip"
instance_types, tokens = get_cell_predictions_with_tokens(num_nuclei_classes,
predictions, magnification=wsi.metadata["magnification"]
)
processed_patches = []
# unpack each patch from batch
cell_dict_wsi = [] # for storing all cell information
cell_dict_detection = [] # for storing only the centroids
nuclei_types = dataset_config["nuclei_types"]
graph_data = {
"cell_tokens": [],
"positions": [],
"contours": [],
"metadata": {"wsi_metadata": wsi.metadata, "nuclei_types": nuclei_types},
}
for idx, (patch_instance_types, patch_metadata) in enumerate(
zip(instance_types, metadata)
):
# add global patch metadata
patch_cell_detection = {}
patch_cell_detection["patch_metadata"] = patch_metadata
patch_cell_detection["type_map"] = dataset_config["nuclei_types"]
processed_patches.append(
f"{patch_metadata['row']}_{patch_metadata['col']}"
)
# calculate coordinate on highest magnifications
# wsi_scaling_factor = patch_metadata["wsi_metadata"]["downsampling"]
# patch_size = patch_metadata["wsi_metadata"]["patch_size"]
wsi_scaling_factor = wsi.metadata["downsampling"]
patch_size = wsi.metadata["patch_size"]
x_global = int(
patch_metadata["row"] * patch_size * wsi_scaling_factor
- (patch_metadata["row"] + 0.5) * overlap
)
y_global = int(
patch_metadata["col"] * patch_size * wsi_scaling_factor
- (patch_metadata["col"] + 0.5) * overlap
)
# extract cell information
for cell in patch_instance_types.values():
if cell["type"] == nuclei_types["Background"]:
continue
offset_global = np.array([x_global, y_global])
centroid_global = cell["centroid"] + np.flip(offset_global)
contour_global = cell["contour"] + np.flip(offset_global)
bbox_global = cell["bbox"] + offset_global
cell_dict = {
"bbox": bbox_global.tolist(),
"centroid": centroid_global.tolist(),
"contour": contour_global.tolist(),
"type_prob": cell["type_prob"],
"type": cell["type"],
"patch_coordinates": [
patch_metadata["row"],
patch_metadata["col"],
],
"cell_status": get_cell_position_marging(
cell["bbox"], 1024, 64
),
"offset_global": offset_global.tolist()
# optional: Local positional information
# "bbox_local": cell["bbox"].tolist(),
# "centroid_local": cell["centroid"].tolist(),
# "contour_local": cell["contour"].tolist(),
}
cell_detection = {
"bbox": bbox_global.tolist(),
"centroid": centroid_global.tolist(),
"type": cell["type"],
}
if np.max(cell["bbox"]) == 1024 or np.min(cell["bbox"]) == 0:
position = get_cell_position(cell["bbox"], 1024)
cell_dict["edge_position"] = True
cell_dict["edge_information"] = {}
cell_dict["edge_information"]["position"] = position
cell_dict["edge_information"][
"edge_patches"
] = get_edge_patch(
position, patch_metadata["row"], patch_metadata["col"]
)
else:
cell_dict["edge_position"] = False
cell_dict_wsi.append(cell_dict)
cell_dict_detection.append(cell_detection)
# get the cell token
bb_index = cell["bbox"] / patch_size
bb_index[0, :] = np.floor(bb_index[0, :])
bb_index[1, :] = np.ceil(bb_index[1, :])
bb_index = bb_index.astype(np.uint8)
cell_token = tokens[
idx,
bb_index[0, 1] : bb_index[1, 1],
bb_index[0, 0] : bb_index[1, 0],
:,
]
cell_token = torch.mean(
rearrange(cell_token, "H W D -> (H W) D"), dim=0
)
graph_data["cell_tokens"].append(cell_token)
graph_data["positions"].append(torch.Tensor(centroid_global))
graph_data["contours"].append(torch.Tensor(contour_global))
# post processing
logger.info(f"Detected cells before cleaning: {len(cell_dict_wsi)}")
keep_idx = post_process_edge_cells(cell_list=cell_dict_wsi, logger=logger)
cell_dict_wsi = [cell_dict_wsi[idx_c] for idx_c in keep_idx]
cell_dict_detection = [cell_dict_detection[idx_c] for idx_c in keep_idx]
graph_data["cell_tokens"] = [
graph_data["cell_tokens"][idx_c] for idx_c in keep_idx
]
graph_data["positions"] = [graph_data["positions"][idx_c] for idx_c in keep_idx]
graph_data["contours"] = [graph_data["contours"][idx_c] for idx_c in keep_idx]
logger.info(f"Detected cells after cleaning: {len(keep_idx)}")
logger.info(
f"Processed all patches. Storing final results: {str(outdir / f'cells.json')} and cell_detection.json"
)
cell_dict_wsi = {
"wsi_metadata": wsi.metadata,
"processed_patches": processed_patches,
"type_map": dataset_config["nuclei_types"],
"cells": cell_dict_wsi,
}
with zipfile.ZipFile(outfile, "w", compression=zipfile.ZIP_DEFLATED, compresslevel=9) as zf:
zf.writestr("cells.json", ujson.dumps(cell_dict_wsi, outfile, indent=2))
if geojson:
logger.info("Converting segmentation to geojson")
geojson_list = convert_geojson(cell_dict_wsi["cells"], True)
zf.writestr("cells.geojson", ujson.dumps(geojson_list, outfile, indent=2))
cell_dict_detection = {
"wsi_metadata": wsi.metadata,
"processed_patches": processed_patches,
"type_map": dataset_config["nuclei_types"],
"cells": cell_dict_detection,
}
zf.writestr("cell_detection.json", ujson.dumps(cell_dict_detection, outfile, indent=2))
if geojson:
logger.info("Converting detection to geojson")
geojson_list = convert_geojson(cell_dict_wsi["cells"], False)
zf.writestr("cell_detection.geojson", ujson.dumps(geojson_list, outfile, indent=2))
logger.info(
f"Create cell graph with embeddings and save it under: {str(outdir / 'cells.pt')}"
)
graph = CellGraphDataWSI(
x=torch.stack(graph_data["cell_tokens"]),
positions=torch.stack(graph_data["positions"]),
contours=graph_data["contours"],
metadata=graph_data["metadata"],
)
torch_bytes_io = BytesIO()
#torch.save(graph, outdir / "cells.pt")
torch.save(graph, torch_bytes_io)
zf.writestr("cells.pt", torch_bytes_io.getvalue())
flag_file = outdir / FLAG_FILE_NAME
flag_file.touch()
cell_stats_df = pd.DataFrame(cell_dict_wsi["cells"])
cell_stats = dict(cell_stats_df.value_counts("type"))
nuclei_types_inverse = {v: k for k, v in nuclei_types.items()}
verbose_stats = {nuclei_types_inverse[k]: v for k, v in cell_stats.items()}
logger.info(f"Finished with cell detection for WSI {wsi.name}")
logger.info("Stats:")
logger.info(f"{verbose_stats}")
def post_process_edge_cells(cell_list: List[dict], logger) -> List[int]:
"""Use the CellPostProcessor to remove multiple cells and merge due to overlap
Args:
cell_list (List[dict]): List with cell-dictionaries. Required keys:
* bbox
* centroid
* contour
* type_prob
* type
* patch_coordinates
* cell_status
* offset_global
Returns:
List[int]: List with integers of cells that should be kept
"""
cell_processor = CellPostProcessor(cell_list, logger)
cleaned_cells_idx = cell_processor.post_process_cells()
return sorted(cell_record["index"] for cell_record in cleaned_cells_idx)
def convert_geojson(cell_list: list[dict], polygons: bool = False) -> List[dict]:
"""Convert a list of cells to a geojson object
Either a segmentation object (polygon) or detection points are converted
Args:
cell_list (list[dict]): Cell list with dict entry for each cell.
Required keys for detection:
* type
* centroid
Required keys for segmentation:
* type
* contour
polygons (bool, optional): If polygon segmentations (True) or detection points (False). Defaults to False.
Returns:
List[dict]: Geojson like list
"""
if polygons:
cell_segmentation_df = pd.DataFrame(cell_list)
detected_types = sorted(cell_segmentation_df.type.unique())
geojson_placeholder = []
for cell_type in detected_types:
cells = cell_segmentation_df[cell_segmentation_df["type"] == cell_type]
contours = cells["contour"].to_list()
final_c = []
for c in contours:
c.append(c[0])
final_c.append([c])
cell_geojson_object = get_template_segmentation()
cell_geojson_object["id"] = str(uuid.uuid4())
cell_geojson_object["geometry"]["coordinates"] = final_c
cell_geojson_object["properties"]["classification"][
"name"
] = TYPE_NUCLEI_DICT[cell_type]
cell_geojson_object["properties"]["classification"][
"color"
] = COLOR_DICT[cell_type]
geojson_placeholder.append(cell_geojson_object)
else:
cell_detection_df = pd.DataFrame(cell_list)
detected_types = sorted(cell_detection_df.type.unique())
geojson_placeholder = []
for cell_type in detected_types:
cells = cell_detection_df[cell_detection_df["type"] == cell_type]
centroids = cells["centroid"].to_list()
cell_geojson_object = get_template_point()
cell_geojson_object["id"] = str(uuid.uuid4())
cell_geojson_object["geometry"]["coordinates"] = centroids
cell_geojson_object["properties"]["classification"][
"name"
] = TYPE_NUCLEI_DICT[cell_type]
cell_geojson_object["properties"]["classification"][
"color"
] = COLOR_DICT[cell_type]
geojson_placeholder.append(cell_geojson_object)
return geojson_placeholder
def calculate_instance_map(num_nuclei_classes: int, predictions: OrderedDict, magnification: Literal[20, 40] = 40
) -> Tuple[torch.Tensor, List[dict]]:
"""Calculate Instance Map from network predictions (after Softmax output)
Args:
predictions (dict): Dictionary with the following required keys:
* nuclei_binary_map: Binary Nucleus Predictions. Shape: (batch_size, H, W, 2)
* nuclei_type_map: Type prediction of nuclei. Shape: (batch_size, H, W, 6)
* hv_map: Horizontal-Vertical nuclei mapping. Shape: (batch_size, H, W, 2)
magnification (Literal[20, 40], optional): Which magnification the data has. Defaults to 40.
Returns:
Tuple[torch.Tensor, List[dict]]:
* torch.Tensor: Instance map. Each Instance has own integer. Shape: (batch_size, H, W)
* List of dictionaries. Each List entry is one image. Each dict contains another dict for each detected nucleus.
For each nucleus, the following information are returned: "bbox", "centroid", "contour", "type_prob", "type"
"""
cell_post_processor = DetectionCellPostProcessor(nr_types=num_nuclei_classes, magnification=magnification, gt=False)
instance_preds = []
type_preds = []
max_nuclei_type_predictions = predictions["nuclei_type_map"].argmax(dim=-1, keepdims=True).detach()
max_nuclei_type_predictions = max_nuclei_type_predictions.cpu() # This is a costly operation because this map is rather large
max_nuclei_location_predictions = predictions["nuclei_binary_map"].argmax(dim=-1, keepdims=True).detach().cpu()
for i in range(predictions["nuclei_binary_map"].shape[0]):
# Broke this out to profile better
pred_map = np.concatenate(
[
max_nuclei_type_predictions[i],
max_nuclei_location_predictions[i],
predictions["hv_map"][i].detach().cpu(),
],
axis=-1,
)
instance_pred = cell_post_processor.post_process_cell_segmentation(pred_map)
instance_preds.append(instance_pred[0])
type_preds.append(instance_pred[1])
return torch.Tensor(np.stack(instance_preds)), type_preds
def get_cell_predictions_with_tokens(num_nuclei_classes: int,
predictions: dict, magnification: int = 40
) -> Tuple[List[dict], torch.Tensor]:
"""Take the raw predictions, apply softmax and calculate type instances
Args:
predictions (dict): Network predictions with tokens. Keys:
magnification (int, optional): WSI magnification. Defaults to 40.
Returns:
Tuple[List[dict], torch.Tensor]:
* List[dict]: List with a dictionary for each batch element with cell seg results
Contains bbox, contour, 2D-position, type and type_prob for each cell
* List[dict]: Network tokens on cpu device with shape (batch_size, num_tokens_h, num_tokens_w, embd_dim)
"""
predictions["nuclei_binary_map"] = F.softmax(
predictions["nuclei_binary_map"], dim=-1
)
predictions["nuclei_type_map"] = F.softmax(
predictions["nuclei_type_map"], dim=-1
)
# get the instance types
(
_,
instance_types,
) = calculate_instance_map(num_nuclei_classes, predictions, magnification=magnification)
# get the tokens
tokens = predictions["tokens"]
return instance_types, tokens
class CellSegmentationInference:
def __init__(
self,
model_path: Union[Path, str],
gpu: int,
enforce_mixed_precision: bool = False,
) -> None:
"""Cell Segmentation Inference class.
After setup, a WSI can be processed by calling process_wsi method
Args:
model_path (Union[Path, str]): Path to model checkpoint
gpu (int): CUDA GPU id to use
enforce_mixed_precision (bool, optional): Using PyTorch autocasting with dtype float16 to speed up inference. Also good for trained amp networks.
Can be used to enforce amp inference even for networks trained without amp. Otherwise, the network setting is used.
Defaults to False.
"""
self.model_path = Path(model_path)
if gpu >= 0:
self.device = f"cuda:{gpu}"
else:
self.device = "cpu"
self.__instantiate_logger()
self.__load_model()
self.__load_inference_transforms()
self.__setup_amp(enforce_mixed_precision=enforce_mixed_precision)
def __instantiate_logger(self) -> None:
"""Instantiate logger
Logger is using no formatters. Logs are stored in the run directory under the filename: inference.log
"""
logger = Logger(
level="INFO",
)
self.logger = logger.create_logger()
def __load_model(self) -> None:
"""Load model and checkpoint and load the state_dict"""
self.logger.info(f"Loading model: {self.model_path}")
model_checkpoint = torch.load(self.model_path, map_location="cpu")
# unpack checkpoint
self.run_conf = unflatten_dict(model_checkpoint["config"], ".")
self.model = self.__get_model(model_type=model_checkpoint["arch"])
self.logger.info(
self.model.load_state_dict(model_checkpoint["model_state_dict"])
)
self.model.eval()
self.model.to(self.device)
def __get_model(
self, model_type: str
) -> Union[
CellViT,
CellViTUnshared,
CellViT256,
CellViTUnshared,
CellViTSAM,
CellViTSAMUnshared,
]:
"""Return the trained model for inference
Args:
model_type (str): Name of the model. Must either be one of:
CellViT, CellViTUnshared, CellViT256, CellViT256Unshared, CellViTSAM, CellViTSAMUnshared
Returns:
Union[CellViT, CellViTUnshared, CellViT256, CellViT256Unshared, CellViTSAM, CellViTSAMUnshared]: Model
"""
implemented_models = [
"CellViT",
"CellViTUnshared",
"CellViT256",
"CellViT256Unshared",
"CellViTSAM",
"CellViTSAMUnshared",
]
if model_type not in implemented_models:
raise NotImplementedError(
f"Unknown model type. Please select one of {implemented_models}"
)
if model_type in ["CellViT", "CellViTUnshared"]:
if model_type == "CellViT":
model_class = CellViT
elif model_type == "CellViTUnshared":
model_class = CellViTUnshared
model = model_class(
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
embed_dim=self.run_conf["model"]["embed_dim"],
input_channels=self.run_conf["model"].get("input_channels", 3),
depth=self.run_conf["model"]["depth"],
num_heads=self.run_conf["model"]["num_heads"],
extract_layers=self.run_conf["model"]["extract_layers"],
)
elif model_type in ["CellViT256", "CellViT256Unshared"]:
if model_type == "CellViT256":
model_class = CellViT256
elif model_type == "CellViTVIT256Unshared":
model_class = CellViT256Unshared
model = model_class(
model256_path=None,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
)
elif model_type in ["CellViTSAM", "CellViTSAMUnshared"]:
if model_type == "CellViTSAM":
model_class = CellViTSAM
elif model_type == "CellViTSAMUnshared":
model_class = CellViTSAMUnshared
model = model_class(
model_path=None,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
vit_structure=self.run_conf["model"]["backbone"],
)
return model
def __load_inference_transforms(self):
"""Load the inference transformations from the run_configuration"""
self.logger.info("Loading inference transformations")
transform_settings = self.run_conf["transformations"]
if "normalize" in transform_settings:
mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
else:
mean = (0.5, 0.5, 0.5)
std = (0.5, 0.5, 0.5)
self.inference_transforms = T.Compose(
[T.ToTensor(), T.Normalize(mean=mean, std=std)]
)
def __setup_amp(self, enforce_mixed_precision: bool = False) -> None:
"""Setup automated mixed precision (amp) for inference.
Args:
enforce_mixed_precision (bool, optional): Using PyTorch autocasting with dtype float16 to speed up inference. Also good for trained amp networks.
Can be used to enforce amp inference even for networks trained without amp. Otherwise, the network setting is used.
Defaults to False.
"""
if enforce_mixed_precision:
self.mixed_precision = enforce_mixed_precision
else:
self.mixed_precision = self.run_conf["training"].get(
"mixed_precision", False
)
def process_wsi(
self,
wsi: WSI,
subdir_name: str = None,
patch_size: int = 1024,
overlap: int = 64,
batch_size: int = 8,
geojson: bool = False,
) -> None:
"""Process WSI file
Args:
wsi (WSI): WSI object
subdir_name (str, optional): If provided, a subdir with the given name is created in the cell_detection folder.
Helpful if you need to store different cell detection results next to each other. Defaults to None (no subdir).
patch_size (int, optional): Patch-Size. Default to 1024.
overlap (int, optional): Overlap between patches. Defaults to 64.
batch_size (int, optional): Batch-size for inference. Defaults to 8.
geosjon (bool, optional): If a geojson export should be performed. Defaults to False.
"""
self.logger.info(f"Processing WSI: {wsi.name}")
wsi_inference_dataset = PatchedWSIInference(
wsi, transform=self.inference_transforms
)
num_workers = int(3 / 4 * os.cpu_count())
if num_workers is None:
num_workers = 16
num_workers = int(np.clip(num_workers, 1, 2 * batch_size))
wsi_inference_dataloader = DataLoader(
dataset=wsi_inference_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
collate_fn=wsi_inference_dataset.collate_batch,
pin_memory=False,
)
dataset_config = self.run_conf["dataset_config"]
nuclei_types = dataset_config["nuclei_types"]
if subdir_name is not None:
outdir = Path(wsi.patched_slide_path) / "cell_detection" / subdir_name
else:
outdir = Path(wsi.patched_slide_path) / "cell_detection"
outdir.mkdir(exist_ok=True, parents=True)
predicted_batches = []
with torch.no_grad():
for batch in tqdm.tqdm(
wsi_inference_dataloader, total=len(wsi_inference_dataloader)
):
patches = batch[0].to(self.device)
metadata = batch[1]
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
predictions_ = self.model(patches, retrieve_tokens=True)
else:
predictions_ = self.model(patches, retrieve_tokens=True)
# reshape, apply softmax to segmentation maps
#predictions = self.model.reshape_model_output(predictions_, self.device)
predictions = self.model.reshape_model_output(predictions_, 'cpu')
predicted_batches.append((predictions, metadata))
postprocess_predictions(predicted_batches, self.model.num_nuclei_classes, wsi, self.logger, dataset_config, overlap, patch_size, geojson, outdir)
def process_wsi_filelist(self,
wsi_filelist,
subdir_name: str = None,
patch_size: int = 1024,
overlap: int = 64,
batch_size: int = 8,
torch_compile: bool = False,
geojson: bool = False,
n_postprocess_workers: int = 0,
n_dataloader_workers: int = 4,
overwrite: bool = False):
if torch_compile:
self.logger.info("Model will be compiled using torch.compile. First batch will take a lot more time to compute.")
self.model = torch.compile(self.model)
dataset = InferenceWSIDataset(wsi_filelist, transform=self.inference_transforms, overwrite=overwrite, n_workers=n_postprocess_workers)
self.logger.info(f"Loaded dataset with {dataset.get_n_files()} images")
dataloader = DataLoader(dataset, batch_size=batch_size, collate_fn=wsi_patch_collator, num_workers=n_dataloader_workers)
#with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], record_shapes=True) as prof:
post_process_arguments = PostprocessArguments(n_images=dataset.get_n_files(),
num_nuclei_classes=self.model.num_nuclei_classes,
dataset_config=self.run_conf['dataset_config'],
overlap=overlap,
patch_size=patch_size,
geojson=geojson,
subdir_name=subdir_name,
n_workers=n_postprocess_workers,
logger=self.logger)
if n_postprocess_workers > 0:
self._process_wsi_filelist_multiprocessing(dataloader,
post_process_arguments)
else:
self._process_wsi_filelist_singleprocessing(dataloader,
post_process_arguments)
#print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
def _process_wsi_filelist_singleprocessing(self,
dataloader,
post_process_arguments):
wsi_work_map = {}
with torch.no_grad():
try:
for batch in tqdm.tqdm(dataloader, desc="Processing patches"):
patches, local_idxs, wsi_files, metadatas = batch
patches = patches.to(self.device)
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
predictions_ = self.model(patches, retrieve_tokens=True)
else:
predictions_ = self.model(patches, retrieve_tokens=True)
# reshape, apply softmax to segmentation maps
#predictions = self.model.reshape_model_output(predictions_, self.device)
predictions = self.model.reshape_model_output(predictions_, 'cpu')
# We break out the predictions into records (one dict per patch instead of all patches in one dict)
prediction_records = [{k: v[i] for k,v in predictions.items()} for i in range(len(local_idxs))]
for i, wsi_file in enumerate(wsi_files):
wsi_name = wsi_file.name
if wsi_name not in wsi_work_map:
wsi_work_map[wsi_name] = []
(wsi_work_list) = wsi_work_map[wsi_name]
work_package = (local_idxs[i], prediction_records[i], metadatas[i])
(wsi_work_list).append(work_package)
if len((wsi_work_list)) == wsi_file.get_number_patches():
local_idxs, predictions_records, metadata = zip(*wsi_work_list)
# Merge the prediction records into a single dictionary again.
predictions = defaultdict(list)
for record in predictions_records:
for k,v in record.items():
predictions[k].append(v)
predictions_stacked = {k: torch.stack(v).to(torch.float32) for k,v in predictions.items()}
postprocess_predictions(predictions_stacked, metadata, wsi_file, post_process_arguments)
del wsi_work_map[wsi_name]
except KeyboardInterrupt:
pass
def _process_wsi_filelist_multiprocessing(self,
dataloader,
post_process_arguments: PostprocessArguments):
pbar_batches = tqdm.trange(len(dataloader), desc="Processing patch-batches")
pbar_postprocessing = tqdm.trange(post_process_arguments.n_images, desc="Postprocessed images")
wsi_work_map = {}
with torch.no_grad():
with multiprocessing.Pool(post_process_arguments.n_workers) as pool:
try:
results = []
for batch in dataloader:
patches, local_idxs, wsi_files, metadatas = batch
patches = patches.to(self.device)
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
predictions_ = self.model(patches, retrieve_tokens=True)
else:
predictions_ = self.model(patches, retrieve_tokens=True)
# reshape, apply softmax to segmentation maps
#predictions = self.model.reshape_model_output(predictions_, self.device)
predictions = self.model.reshape_model_output(predictions_, 'cpu')
pbar_batches.update()
# We break out the predictions into records (one dict per patch instead of all patches in one dict)
prediction_records = [{k: v[i] for k,v in predictions.items()} for i in range(len(local_idxs))]
for i, wsi_file in enumerate(wsi_files):
wsi_name = wsi_file.name
if wsi_name not in wsi_work_map:
wsi_work_map[wsi_name] = []
wsi_work_list = wsi_work_map[wsi_name]
work_package = (local_idxs[i], prediction_records[i], metadatas[i])
wsi_work_list.append(work_package)
if len((wsi_work_list)) == wsi_file.get_number_patches():
while len(results) >= post_process_arguments.n_workers:
n_working = len(results)
results = [result for result in results if not result.ready()]
n_done = n_working - len(results)
pbar_postprocessing.update(n_done)
pbar_batches.set_description(f"Processing patch-batches (waiting on postprocessing workers)")
sleep(post_process_arguments.wait_time)
result = pool.apply_async(f_post_processing_worker, (wsi_file, wsi_work_list, post_process_arguments))
pbar_batches.set_description(f"Processing patch-batches")
results.append(result)
del wsi_work_map[wsi_name]
self.logger.info("Model predictions done, waiting for postprocessing to finish.")
pool.close()
pool.join()
except KeyboardInterrupt:
pool.terminate()
pool.join()
def get_cell_predictions_with_tokens(
self, predictions: dict, magnification: int = 40
) -> Tuple[List[dict], torch.Tensor]:
"""Take the raw predictions, apply softmax and calculate type instances
Args:
predictions (dict): Network predictions with tokens. Keys:
magnification (int, optional): WSI magnification. Defaults to 40.
Returns:
Tuple[List[dict], torch.Tensor]:
* List[dict]: List with a dictionary for each batch element with cell seg results
Contains bbox, contour, 2D-position, type and type_prob for each cell
* List[dict]: Network tokens on cpu device with shape (batch_size, num_tokens_h, num_tokens_w, embd_dim)
"""
predictions["nuclei_binary_map"] = F.softmax(
predictions["nuclei_binary_map"], dim=-1
)
predictions["nuclei_type_map"] = F.softmax(
predictions["nuclei_type_map"], dim=-1
)
# get the instance types
(
_,
instance_types,
) = calculate_instance_map(self.model.num_nuclei_classes, predictions, magnification=magnification)
# get the tokens
tokens = predictions["tokens"].to("cpu")
return instance_types, tokens
def post_process_edge_cells(self, cell_list: List[dict]) -> List[int]:
"""Use the CellPostProcessor to remove multiple cells and merge due to overlap
Args:
cell_list (List[dict]): List with cell-dictionaries. Required keys:
* bbox
* centroid
* contour
* type_prob
* type
* patch_coordinates
* cell_status
* offset_global
Returns:
List[int]: List with integers of cells that should be kept
"""
cell_processor = CellPostProcessor(cell_list, self.logger)
cleaned_cells = cell_processor.post_process_cells()
return list(cleaned_cells.index.values)
class CellPostProcessor:
def __init__(self, cell_list: List[dict], logger: logging.Logger) -> None:
"""POst-Processing a list of cells from one WSI
Args:
cell_list (List[dict]): List with cell-dictionaries. Required keys:
* bbox
* centroid
* contour
* type_prob
* type
* patch_coordinates
* cell_status
* offset_global
logger (logging.Logger): Logger
"""
self.logger = logger
self.logger.info("Initializing Cell-Postprocessor")
for index, cell_dict in enumerate(cell_list):
# TODO: Shouldn't it be the other way around? Column = x, Row = Y
x,y = cell_dict["patch_coordinates"]
cell_dict["patch_row"] = x
cell_dict["patch_col"] = y
cell_dict["patch_coordinates"] = f"{x}_{y}"
cell_dict["index"] = index
#self.cell_df = pd.DataFrame(cell_list)
self.cell_records = cell_list
#xs, ys = zip(*self.cell_df["patch_coordinates"])
#self.cell_df["patch_row"] = xs
#self.cell_df["patch_col"] = ys
#self.cell_df["patch_coordinates"] = [f"{x}_{y}" for x,y in zip(xs, ys)]
# The call to DataFrame.apply below was exceedingly slow, the list comprehension above is _much_ faster
#self.cell_df = self.cell_df.apply(convert_coordinates, axis=1)
self.mid_cells = [cell_record for cell_record in self.cell_records if cell_record["cell_status"] == 0]
self.margin_cells = [cell_record for cell_record in self.cell_records if cell_record["cell_status"] != 0]
def post_process_cells(self) -> List[Dict]:
"""Main Post-Processing coordinator, entry point
Returns:
List[Dict]: List of records (dictionaries) with post-processed and cleaned cells
"""
self.logger.info("Finding edge-cells for merging")
cleaned_edge_cells = self._clean_edge_cells()
self.logger.info("Removal of cells detected multiple times")
cleaned_edge_cells = self._remove_overlap(cleaned_edge_cells)
# merge with mid cells
postprocessed_cells = self.mid_cells + cleaned_edge_cells
return postprocessed_cells
def _clean_edge_cells(self) -> List[Dict]:
"""Create a record list that just contains all margin cells (cells inside the margin, not touching the border)
and border/edge cells (touching border) with no overlapping equivalent (e.g, if patch has no neighbour)
Returns:
List[Dict]: Cleaned record list
"""
margin_cells = [record for record in self.cell_records if record["edge_position"] == 0]
edge_cells = [record for record in self.cell_records if record["edge_position"] == 1]
existing_patches = list(set(record["patch_coordinates"] for record in self.margin_cells))
edge_cells_unique = []
for record in edge_cells:
edge_information = record["edge_information"]
edge_patch = edge_information["edge_patches"][0]
edge_patch = f"{edge_patch[0]}_{edge_patch[1]}"
if edge_patch not in existing_patches:
edge_cells_unique.append(record)
cleaned_edge_cells = margin_cells + edge_cells_unique
return cleaned_edge_cells
def _remove_overlap(self, cleaned_edge_cells: List[Dict]) -> List[Dict]:
"""Remove overlapping cells from provided cell record list
Args:
cleaned_edge_cells (List[Dict]): List[Dict] that should be cleaned
Returns:
List[Dict]: Cleaned cell records
"""
merged_cells = cleaned_edge_cells
for iteration in range(20):
poly_list = []
for i, cell_info in enumerate(merged_cells):
poly = Polygon(cell_info["contour"])
if not poly.is_valid:
self.logger.debug("Found invalid polygon - Fixing with buffer 0")
multi = poly.buffer(0)
if isinstance(multi, MultiPolygon):
if len(multi) > 1:
poly_idx = np.argmax([p.area for p in multi])
poly = multi[poly_idx]
poly = Polygon(poly)
else:
poly = multi[0]
poly = Polygon(poly)
else:
poly = Polygon(multi)
poly.uid = i
poly_list.append(poly)
# use an strtree for fast querying
tree = strtree.STRtree(poly_list)
merged_idx = deque()
iterated_cells = set()
overlaps = 0
for query_poly in poly_list:
if query_poly.uid not in iterated_cells:
intersected_polygons = tree.query(
query_poly
) # this also contains a self-intersection
if (
len(intersected_polygons) > 1
): # we have more at least one intersection with another cell
submergers = [] # all cells that overlap with query
for inter_poly in intersected_polygons:
if (
inter_poly.uid != query_poly.uid
and inter_poly.uid not in iterated_cells
):
if (
query_poly.intersection(inter_poly).area
/ query_poly.area
> 0.01
or query_poly.intersection(inter_poly).area
/ inter_poly.area
> 0.01
):
overlaps = overlaps + 1
submergers.append(inter_poly)
iterated_cells.add(inter_poly.uid)
# catch block: empty list -> some cells are touching, but not overlapping strongly enough
if len(submergers) == 0:
merged_idx.append(query_poly.uid)
else: # merging strategy: take the biggest cell, other merging strategies needs to get implemented
selected_poly_index = np.argmax(
np.array([p.area for p in submergers])
)
selected_poly_uid = submergers[selected_poly_index].uid
merged_idx.append(selected_poly_uid)
else:
# no intersection, just add
merged_idx.append(query_poly.uid)
iterated_cells.add(query_poly.uid)
self.logger.info(
f"Iteration {iteration}: Found overlap of # cells: {overlaps}"
)
if overlaps == 0:
self.logger.info("Found all overlapping cells")
break
elif iteration == 20:
self.logger.info(
f"Not all doubled cells removed, still {overlaps} to remove. For perfomance issues, we stop iterations now. Please raise an issue in git or increase number of iterations."
)
merged_cells = [cleaned_edge_cells[i] for i in merged_idx]
return merged_cells
def convert_coordinates(row: pd.Series) -> pd.Series:
"""Convert a row from x,y type to one string representation of the patch position for fast querying
Repr: x_y
Args:
row (pd.Series): Row to be processed
Returns:
pd.Series: Processed Row
"""
x, y = row["patch_coordinates"]
row["patch_row"] = x
row["patch_col"] = y
row["patch_coordinates"] = f"{x}_{y}"
return row
def get_cell_position(bbox: np.ndarray, patch_size: int = 1024) -> List[int]:
"""Get cell position as a list
Entry is 1, if cell touches the border: [top, right, down, left]
Args:
bbox (np.ndarray): Bounding-Box of cell
patch_size (int, optional): Patch-size. Defaults to 1024.
Returns:
List[int]: List with 4 integers for each position
"""
# bbox = 2x2 array in h, w style
# bbox[0,0] = upper position (height)
# bbox[1,0] = lower dimension (height)
# boox[0,1] = left position (width)
# bbox[1,1] = right position (width)
# bbox[:,0] -> x dimensions
top, left, down, right = False, False, False, False
if bbox[0, 0] == 0:
top = True
if bbox[0, 1] == 0:
left = True
if bbox[1, 0] == patch_size:
down = True
if bbox[1, 1] == patch_size:
right = True
position = [top, right, down, left]
position = [int(pos) for pos in position]
return position
def get_cell_position_marging(
bbox: np.ndarray, patch_size: int = 1024, margin: int = 64
) -> int:
"""Get the status of the cell, describing the cell position
A cell is either in the mid (0) or at one of the borders (1-8)
# Numbers are assigned clockwise, starting from top left
# i.e., top left = 1, top = 2, top right = 3, right = 4, bottom right = 5 bottom = 6, bottom left = 7, left = 8
# Mid status is denoted by 0
Args:
bbox (np.ndarray): Bounding Box of cell
patch_size (int, optional): Patch-Size. Defaults to 1024.
margin (int, optional): Margin-Size. Defaults to 64.
Returns:
int: Cell Status
"""
cell_status = None
if np.max(bbox) > patch_size - margin or np.min(bbox) < margin:
if bbox[0, 0] < margin:
# top left, top or top right
if bbox[0, 1] < margin:
# top left
cell_status = 1
elif bbox[1, 1] > patch_size - margin:
# top right
cell_status = 3
else:
# top
cell_status = 2
elif bbox[1, 1] > patch_size - margin:
# top right, right or bottom right
if bbox[1, 0] > patch_size - margin:
# bottom right
cell_status = 5
else:
# right
cell_status = 4
elif bbox[1, 0] > patch_size - margin:
# bottom right, bottom, bottom left
if bbox[0, 1] < margin:
# bottom left
cell_status = 7
else:
# bottom
cell_status = 6
elif bbox[0, 1] < margin:
# bottom left, left, top left, but only left is left
cell_status = 8
else:
cell_status = 0
return cell_status
def get_edge_patch(position, row, col):
# row starting on bottom or on top?
if position == [1, 0, 0, 0]:
# top
return [[row - 1, col]]
if position == [1, 1, 0, 0]:
# top and right
return [[row - 1, col], [row - 1, col + 1], [row, col + 1]]
if position == [0, 1, 0, 0]:
# right
return [[row, col + 1]]
if position == [0, 1, 1, 0]:
# right and down
return [[row, col + 1], [row + 1, col + 1], [row + 1, col]]
if position == [0, 0, 1, 0]:
# down
return [[row + 1, col]]
if position == [0, 0, 1, 1]:
# down and left
return [[row + 1, col], [row + 1, col - 1], [row, col - 1]]
if position == [0, 0, 0, 1]:
# left
return [[row, col - 1]]
if position == [1, 0, 0, 1]:
# left and top
return [[row, col - 1], [row - 1, col - 1], [row - 1, col]]
# CLI
class InferenceWSIParser:
"""Parser"""
def __init__(self) -> None:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Perform CellViT inference for given run-directory with model checkpoints and logs",
)
requiredNamed = parser.add_argument_group("required named arguments")
requiredNamed.add_argument(
"--model",
type=str,
help="Model checkpoint file that is used for inference",
required=True,
)
parser.add_argument(
"--gpu", type=int, help="Cuda-GPU ID for inference. Default: 0", default=0
)
parser.add_argument(
"--magnification",
type=float,
help="Network magnification. Is used for checking patch magnification such that we use the correct resolution for network. Default: 40",
default=40,
)
parser.add_argument(
"--enforce_amp",
action="store_true",
help="Whether to use mixed precision for inference (enforced). Otherwise network default training settings are used."
" Default: False",
)
parser.add_argument(
"--torch_compile",
action="store_true",
help="Whether to use torch.compile to compile the model before inference. Has an large overhead for single predictions but leads to a significant speedup when predicting on multiple images."
" Default: False",
)
parser.add_argument(
"--batch_size",
type=int,
help="Inference batch-size. Default: 8",
default=8,
)
parser.add_argument(
"--n_postprocess_workers",
type=int,
help="Number of processes to dedicate to post processing. Set to 0 to disable multiprocessing for post processing. Default: 8",
default=8,
)
parser.add_argument(
"--n_dataloader_workers",
type=int,
help="Number of workers to use for the pytorch patch dataloader. Default: 4",
default=4,
)
parser.add_argument(
"--outdir_subdir",
type=str,
help="If provided, a subdir with the given name is created in the cell_detection folder where the results are stored. Default: None",
default=None,
)
parser.add_argument(
"--geojson",
action="store_true",
help="Set this flag to export results as additional geojson files for loading them into Software like QuPath.",
)
parser.add_argument(
"--overwrite",
action="store_true",
help=f"If set, include all found pre-processed files even if they include a \"{FLAG_FILE_NAME}\" file.",
)
# subparsers for either loading a WSI or a WSI folder
# WSI
subparsers = parser.add_subparsers(
dest="command",
description="Main run command for either performing inference on single WSI-file or on whole dataset",
)
subparser_wsi = subparsers.add_parser(
"process_wsi", description="Process a single WSI file"
)
subparser_wsi.add_argument(
"--wsi_path",
type=str,
help="Path to WSI file",
)
subparser_wsi.add_argument(
"--patched_slide_path",
type=str,
help="Path to patched WSI file (specific WSI file, not parent path of patched slide dataset)",
)
# Dataset
subparser_dataset = subparsers.add_parser(
"process_dataset",
description="Process a whole dataset",
)
subparser_dataset.add_argument(
"--wsi_paths", type=str, help="Path to the folder where all WSI are stored"
)
subparser_dataset.add_argument(
"--patch_dataset_path",
type=str,
help="Path to the folder where the patch dataset is stored",
)
subparser_dataset.add_argument(
"--filelist",
type=str,
help="Filelist with WSI to process. Must be a .csv file with one row denoting the filenames (named 'Filename')."
"If not provided, all WSI files with given ending in the filelist are processed.",
default=None,
)
subparser_dataset.add_argument(
"--wsi_extension",
type=str,
help="The extension types used for the WSI files, see configs.python.config (WSI_EXT)",
default="svs",
)
self.parser = parser
def parse_arguments(self) -> dict:
opt = self.parser.parse_args()
return vars(opt)
def check_wsi(wsi: WSI, magnification: float = 40.0):
"""Check if provided patched WSI is having the right settings
Args:
wsi (WSI): WSI to check
magnification (float, optional): Check magnification. Defaults to 40.0.
Raises:
RuntimeError: The magnification is not matching to the network input magnification.
RuntimeError: The patch-size is not devisible by 256.
RunTimeError: The patch-size is not 1024
RunTimeError: The overlap is not 64px sized
"""
if wsi.metadata["magnification"] is not None:
patch_magnification = float(wsi.metadata["magnification"])
else:
patch_magnification = float(
float(wsi.metadata["base_magnification"]) / wsi.metadata["downsampling"]
)
patch_size = int(wsi.metadata["patch_size"])
if patch_magnification != magnification:
raise RuntimeError(
"The magnification is not matching to the network input magnification."
)
if (patch_size % 256) != 0:
raise RuntimeError("The patch-size must be devisible by 256.")
if wsi.metadata["patch_size"] != 1024:
raise RuntimeError("The patch-size must be 1024.")
if wsi.metadata["patch_overlap"] != 64:
raise RuntimeError("The patch-overlap must be 64")
if __name__ == "__main__":
configuration_parser = InferenceWSIParser()
configuration = configuration_parser.parse_arguments()
command = configuration["command"]
cell_segmentation = CellSegmentationInference(
model_path=configuration["model"],
gpu=configuration["gpu"],
enforce_mixed_precision=configuration["enforce_amp"],
)
if command.lower() == "process_wsi":
cell_segmentation.logger.info("Processing single WSI file")
wsi_path = Path(configuration["wsi_path"])
wsi_name = wsi_path.stem
wsi_file = WSI(
name=wsi_name,
patient=wsi_name,
slide_path=wsi_path,
patched_slide_path=configuration["patched_slide_path"],
)
check_wsi(wsi=wsi_file, magnification=configuration["magnification"])
cell_segmentation.process_wsi(
wsi_file,
subdir_name=configuration["outdir_subdir"],
geojson=configuration["geojson"],
batch_size=configuration["batch_size"],
)
elif command.lower() == "process_dataset":
cell_segmentation.logger.info("Processing whole dataset")
if configuration["filelist"] is not None:
if Path(configuration["filelist"]).suffix != ".csv":
raise ValueError("Filelist must be a .csv file!")
cell_segmentation.logger.info(
f"Loading files from filelist {configuration['filelist']}"
)
wsi_filelist = load_wsi_files_from_csv(
csv_path=configuration["filelist"],
wsi_extension=configuration["wsi_extension"],
)
else:
cell_segmentation.logger.info(
f"Loading all files from folder {configuration['wsi_paths']}. No filelist provided."
)
wsi_filelist = [
f
for f in sorted(
Path(configuration["wsi_paths"]).glob(
f"**/*.{configuration['wsi_extension']}"
)
)
]
#if not configuration["overwrite"]:
# wsi_filelist = filter_processed_file(wsi_filelist)
cell_segmentation.process_wsi_filelist(
wsi_filelist,
subdir_name=configuration["outdir_subdir"],
geojson=configuration["geojson"],
batch_size=configuration["batch_size"],
torch_compile=configuration["torch_compile"],
n_postprocess_workers=configuration["n_postprocess_workers"],
n_dataloader_workers=configuration["n_dataloader_workers"],
overwrite=configuration["overwrite"]
)