File size: 8,085 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# -*- coding: utf-8 -*-
from einops import rearrange
from models.encoders.VIT.SAM.image_encoder import ImageEncoderViT
from models.encoders.VIT.vits_histo import VisionTransformer

import torch
import torch.nn as nn
from typing import Callable, Tuple, Type, List


class Conv2DBlock(nn.Module):
    """Conv2DBlock with convolution followed by batch-normalisation, ReLU activation and dropout

    Args:
        in_channels (int): Number of input channels for convolution
        out_channels (int): Number of output channels for convolution
        kernel_size (int, optional): Kernel size for convolution. Defaults to 3.
        dropout (float, optional): Dropout. Defaults to 0.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        dropout: float = 0,
    ) -> None:
        super().__init__()
        self.block = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=((kernel_size - 1) // 2),
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.block(x)


class Deconv2DBlock(nn.Module):
    """Deconvolution block with ConvTranspose2d followed by Conv2d, batch-normalisation, ReLU activation and dropout

    Args:
        in_channels (int): Number of input channels for deconv block
        out_channels (int): Number of output channels for deconv and convolution.
        kernel_size (int, optional): Kernel size for convolution. Defaults to 3.
        dropout (float, optional): Dropout. Defaults to 0.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        dropout: float = 0,
    ) -> None:
        super().__init__()
        self.block = nn.Sequential(
            nn.ConvTranspose2d(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=2,
                stride=2,
                padding=0,
                output_padding=0,
            ),
            nn.Conv2d(
                in_channels=out_channels,
                out_channels=out_channels,
                kernel_size=kernel_size,
                stride=1,
                padding=((kernel_size - 1) // 2),
            ),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.block(x)


class ViTCellViT(VisionTransformer):
    def __init__(
        self,
        extract_layers: List[int],
        img_size: List[int] = [224],
        patch_size: int = 16,
        in_chans: int = 3,
        num_classes: int = 0,
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4,
        qkv_bias: bool = False,
        qk_scale: float = None,
        drop_rate: float = 0,
        attn_drop_rate: float = 0,
        drop_path_rate: float = 0,
        norm_layer: Callable = nn.LayerNorm,
        **kwargs
    ):
        """Vision Transformer with 1D positional embedding

        Args:
            extract_layers: (List[int]): List of Transformer Blocks whose outputs should be returned in addition to the tokens. First blocks starts with 1, and maximum is N=depth.
            img_size (int, optional): Input image size. Defaults to 224.
            patch_size (int, optional): Patch Token size (one dimension only, cause tokens are squared). Defaults to 16.
            in_chans (int, optional): Number of input channels. Defaults to 3.
            num_classes (int, optional): Number of output classes. if num classes = 0, raw tokens are returned (nn.Identity).
                Default to 0.
            embed_dim (int, optional): Embedding dimension. Defaults to 768.
            depth(int, optional): Number of Transformer Blocks. Defaults to 12.
            num_heads (int, optional): Number of attention heads per Transformer Block. Defaults to 12.
            mlp_ratio (float, optional): MLP ratio for hidden MLP dimension (Bottleneck = dim*mlp_ratio).
                Defaults to 4.0.
            qkv_bias (bool, optional): If bias should be used for query (q), key (k), and value (v). Defaults to False.
            qk_scale (float, optional): Scaling parameter. Defaults to None.
            drop_rate (float, optional): Dropout in MLP. Defaults to 0.0.
            attn_drop_rate (float, optional): Dropout for attention layer. Defaults to 0.0.
            drop_path_rate (float, optional): Dropout for skip connection. Defaults to 0.0.
            norm_layer (Callable, optional): Normalization layer. Defaults to nn.LayerNorm.

        """
        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            num_classes=num_classes,
            embed_dim=embed_dim,
            depth=depth,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            drop_rate=drop_rate,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            norm_layer=norm_layer,
        )
        self.extract_layers = extract_layers

    def forward(
        self, x: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """Forward pass with returning intermediate outputs for skip connections

        Args:
            x (torch.Tensor): Input batch

        Returns:
            Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
                torch.Tensor: Output of last layers (all tokens, without classification)
                torch.Tensor: Classification output
                torch.Tensor: Skip connection outputs from extract_layer selection
        """
        extracted_layers = []
        x = self.prepare_tokens(x)

        for depth, blk in enumerate(self.blocks):
            x = blk(x)
            if depth + 1 in self.extract_layers:
                extracted_layers.append(x)

        x = self.norm(x)
        output = self.head(x[:, 0])

        return output, x[:, 0], extracted_layers


class ViTCellViTDeit(ImageEncoderViT):
    def __init__(
        self,
        extract_layers: List[int],
        img_size: int = 1024,
        patch_size: int = 16,
        in_chans: int = 3,
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4,
        out_chans: int = 256,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_abs_pos: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        global_attn_indexes: Tuple[int, ...] = (),
    ) -> None:
        super().__init__(
            img_size,
            patch_size,
            in_chans,
            embed_dim,
            depth,
            num_heads,
            mlp_ratio,
            out_chans,
            qkv_bias,
            norm_layer,
            act_layer,
            use_abs_pos,
            use_rel_pos,
            rel_pos_zero_init,
            window_size,
            global_attn_indexes,
        )
        self.extract_layers = extract_layers

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        extracted_layers = []
        x = self.patch_embed(x)

        if self.pos_embed is not None:
            token_size = x.shape[1]
            x = x + self.pos_embed[:, :token_size, :token_size, :]

        for depth, blk in enumerate(self.blocks):
            x = blk(x)
            if depth + 1 in self.extract_layers:
                extracted_layers.append(x)
        output = self.neck(x.permute(0, 3, 1, 2))
        _output = rearrange(output, "b c h w -> b c (h w)")

        return torch.mean(_output, axis=-1), output, extracted_layers