Spaces:
Running
Running
File size: 23,734 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
# -*- coding: utf-8 -*-
# CellViT networks and adaptions
#
# UNETR paper and code: https://github.com/tamasino52/UNETR
# SAM paper and code: https://segment-anything.com/
#
# @ Fabian Hรถrst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
from collections import OrderedDict
from dataclasses import dataclass
from functools import partial
from json import decoder
from pathlib import Path
from typing import List, Literal, Tuple, Union, Optional, Sequence, Callable
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from cell_segmentation.utils.post_proc_cellvit import DetectionCellPostProcessor
from monai.networks.blocks import UpSample
from monai.networks.layers.factories import Conv
from monai.networks.layers.utils import get_act_layer
from monai.networks.nets.basic_unet import UpCat,TwoConv
from monai.utils import InterpolateMode
from .cellvit_unirepLKnet import UniRepLKNet
from .replknet import *
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
encoder_feature_channel = {
"unireplknet_a": (40, 80, 160, 320),
"unireplknet_f": (48, 96, 192, 384),
"unireplknet_p": (64, 128, 256, 512),
"unireplknet_n": (80, 160, 320, 640),
"unireplknet_t": (80, 160, 320, 640),
"unireplknet_s": (96, 192, 384, 768),
"unireplknet_b": (128, 256, 512, 1024),
"unireplknet_l": (192, 384, 768, 1536),
"unireplknet_xl": (256, 512, 1024, 2048),
"convnext_tiny": (48, 96, 192, 384, 768),
"resnet50": (64, 256, 512, 1024, 2048),
"vitdet_small": (768, 768, 768, 768, 768),
}
def _get_encoder_channels_by_backbone(backbone: str, in_channels: int = 3) -> tuple:
"""
Get the encoder output channels by given backbone name.
Args:
backbone: name of backbone to generate features, can be from [efficientnet-b0, ..., efficientnet-b7].
in_channels: channel of input tensor, default to 3.
Returns:
A tuple of output feature map channels' length .
"""
encoder_channel_tuple = encoder_feature_channel[backbone] #encoder_channel_tupleๆฏๆ็็ผ็ ๅจ้้ๅ
็ป,ๅจ่ฟ้ๆฏๆ4ไธช้้็ๅ
็ป
encoder_channel_list = [in_channels] + list(encoder_channel_tuple) #encoder_channel_listๆฏๆ็็ผ็ ๅจ้้ๅ่กจ[3,80,160,320,640]
encoder_channel = tuple(encoder_channel_list) #encoder_channelๆฏๆ็็ผ็ ๅจ้้ๅ
็ป(3,80,160,320,640)
return encoder_channel
class RepLKDeocder(nn.Module):
def __init__(self,
encoder_channels: Sequence[int],
spatial_dims: int,
decoder_channels: Sequence[int],
stage_lk_sizes,
drop_path,
upsample: str,
pre_conv: Optional[str],
interp_mode: str,
align_corners: Optional[bool],
small_kernel,
dw_ratio: int=1,
small_kernel_merged=False,
norm: Union[str, tuple] = ("batch", {"eps": 1e-3, "momentum": 0.1}),
act: Union[str, tuple] = ("relu", {"inplace": True}),
dropout: Union[float, tuple] = 0.0,
bias: bool = False,
is_pad: bool = True,
ffn_ratio=4,
):
super().__init__()
in_channels = [encoder_channels[-1]] + list(decoder_channels[:-1]) #in_channels=[640,1024,512,256,128]
skip_channels = list(encoder_channels[1:-1][::-1]) + [0]
halves = [True] * (len(skip_channels) - 1)
halves.append(False)
stage_lk_sizes = stage_lk_sizes
blocks = []
for in_chn, skip_chn, out_chn, halve in zip(in_channels, skip_channels, decoder_channels, halves):
blocks.append(
UpCat(
spatial_dims=spatial_dims,
in_chns=in_chn,
cat_chns=skip_chn,
out_chns=out_chn,
act=act,
norm=norm,
dropout=dropout,
bias=bias,
upsample=upsample,
pre_conv=pre_conv,
interp_mode=interp_mode,
align_corners=align_corners,
halves=halve,
is_pad=is_pad,
)
)
self.blocks = nn.ModuleList(blocks)
repblock = []
for i in range(4):
repblock.append(RepLKBlock(in_channels=in_channels[i], dw_channels=int(in_channels[i] * dw_ratio), block_lk_size=stage_lk_sizes[i],
small_kernel=small_kernel, drop_path=drop_path, small_kernel_merged=small_kernel_merged))
self.repblock = nn.ModuleList(repblock)
convffnblock = []
for i in range(4):
convffnblock.append(ConvFFN(in_channels=in_channels[i], internal_channels=int(in_channels[i] * ffn_ratio), out_channels=in_channels[i], drop_path=drop_path))
self.convffnblock = nn.ModuleList(convffnblock)
self.upsample = [UpSample(
spatial_dims,
decoder_channels[i],
decoder_channels[i],
mode=upsample,
pre_conv=pre_conv,
interp_mode=interp_mode,
align_corners=align_corners,) for i in range(len(decoder_channels) - 1)]
self.upsample1= UpSample(
spatial_dims,
256,
256,
2,
mode=upsample,
pre_conv=pre_conv,
interp_mode=interp_mode,
align_corners=align_corners,
)
self.upsample2= UpSample(
spatial_dims,
128,
128,
2,
mode=upsample,
pre_conv=pre_conv,
interp_mode=interp_mode,
align_corners=align_corners,
)
self.convs = TwoConv(spatial_dims, 304, decoder_channels[-2], act, norm, bias, dropout)
self.convs1 = TwoConv(spatial_dims, 152, decoder_channels[-1], act, norm,bias, dropout)
def forward(self, features: List[torch.Tensor], input_feature: torch.Tensor, skip_connect: int = 3):
skips = features[:-1][::-1] #skips[0],[1],[2]=[16,320,16,16],[16,160,32,32],[16,80,64,64],[16,40,128,128]
features = features[1:][::-1]
#input_feature = self.conv1(input_feature) #input_feature=[16,64,256,256]
x = features[0] #x=[16,640,8,8]
for i, (block, repblock, convffnblock) in enumerate(zip(self.blocks, self.repblock, self.convffnblock)):
if i < skip_connect:
skip = skips[i] #skip=[16,320,16,16], skip=[16,160,32,32], skip=[16,80,64,64], skip = [16,40,128,128]
#x = repblock(x)
#x = convffnblock(x)
x = block(x, skip)
else:
#x = repblock(x)
skip = input_feature[1]
x =self.upsample1(x)
x = torch.cat([skip, x], dim=1)
x = self.convs(x)
skip = input_feature[0]
x = self.upsample2(x)
x = torch.cat([skip, x], dim=1)
x = self.convs1(x)
return x
class SegmentationHead(nn.Sequential):
"""
Segmentation head.
This class refers to `segmentation_models.pytorch
<https://github.com/qubvel/segmentation_models.pytorch>`_.
Args:
spatial_dims: number of spatial dimensions.
in_channels: number of input channels for the block.
out_channels: number of output channels for the block.
kernel_size: kernel size for the conv layer.
act: activation type and arguments.
scale_factor: multiplier for spatial size. Has to match input size if it is a tuple.
"""
def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
kernel_size: int = 3,
act: Optional[Union[Tuple, str]] = None,
scale_factor: float = 1.0,
):
conv_layer = Conv[Conv.CONV, spatial_dims](
in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=kernel_size // 2
)
bn_layer = nn.BatchNorm2d(in_channels)
conv_layer1 = conv_bn(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0, groups=1)
nonlinear_layer = nn.GELU()
conv_layer2 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, groups=1)
up_layer: nn.Module = nn.Identity()
if scale_factor > 1.0:
up_layer = UpSample(
spatial_dims=spatial_dims,
scale_factor=scale_factor,
mode="nontrainable",
pre_conv=None,
interp_mode=InterpolateMode.LINEAR,
)
if act is not None:
act_layer = get_act_layer(act)
else:
act_layer = nn.Identity()
super().__init__(bn_layer, conv_layer1, nonlinear_layer, conv_layer2, up_layer)
class CellViT(UniRepLKNet):
def __init__(
self,
model256_path: Union[Path, str],
num_nuclei_classes=int,
num_tissue_classes=int,
in_channels=int,
backbone = "unireplknet_s",
decoder_channels: Tuple = (1024, 512, 256, 128, 64),
spatial_dims: int = 2,
norm: Union[str, tuple] = ("batch", {"eps": 1e-3, "momentum": 0.1}),
act: Union[str, tuple] = ("relu", {"inplace": True}),
dropout: Union[float, tuple] = 0.0,
decoder_bias: bool = False,
upsample: str = "nontrainable",
interp_mode: str = "nearest",
drop_path_rate: float = 0.1,
large_kernel_sizes=[13,27,29,31],
small_kernel=5,
):
super().__init__()
self.num_tissue_classes = num_tissue_classes
self.num_nuclei_classes = num_nuclei_classes
if backbone not in encoder_feature_channel:
raise ValueError(f"invalid model_name {backbone} found, must be one of {encoder_feature_channel.keys()}.")
if spatial_dims not in (2, 3):
raise ValueError("spatial_dims can only be 2 or 3.")
self.backbone = backbone
self.spatial_dims = spatial_dims
encoder_channels = _get_encoder_channels_by_backbone(backbone, in_channels)
self.encoder = UniRepLKNet(
in_chans=3,
num_classes=None,
depths=(3, 3, 27, 3),
dims=(96,192,384,768),
drop_path_rate=0.3,
layer_scale_init_value=1e-6,
head_init_scale=1.,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=True,
use_sync_bn=False,
)
self.decoder = RepLKDeocder(
encoder_channels=encoder_channels,
stage_lk_sizes=large_kernel_sizes,
small_kernel=small_kernel,
drop_path=drop_path_rate,
spatial_dims=spatial_dims,
decoder_channels=decoder_channels,
act=act,
norm=norm,
dropout=dropout,
bias=decoder_bias,
upsample=upsample,
interp_mode=interp_mode,
pre_conv=None,
align_corners=None,
)
self.branches_output = {
"nuclei_binary_map": 2,
"hv_map": 2,
"nuclei_type_maps": self.num_nuclei_classes,
} # number of output channels for each branch
self.nuclei_binary_segmentation_head = SegmentationHead(
spatial_dims=spatial_dims,
in_channels=decoder_channels[-1],
out_channels=self.branches_output["nuclei_binary_map"],
kernel_size=1,
act=None,
scale_factor=1.0,
)
self.hv_map_head = SegmentationHead(
spatial_dims=spatial_dims,
in_channels=decoder_channels[-1],
out_channels=self.branches_output["hv_map"],
kernel_size=1,
act=None,
scale_factor=1.0,
)
self.nuclei_type_maps_head = SegmentationHead(
spatial_dims=spatial_dims,
in_channels=decoder_channels[-1],
out_channels=self.branches_output["nuclei_type_maps"],
kernel_size=1,
act=None,
scale_factor=1.0,
)
self.model256_path = model256_path
def forward(self, x: torch.Tensor) -> dict:
"""Forward pass of CellViT
Args:
x (torch.Tensor): Images in BCHW style
retrieve_tokens (bool, optional): If tokens of ViT should be returned as well. Defaults to False.
Returns:
dict: Output for all branches:
* tissue_types: Raw tissue type prediction. Shape: (batch_size, num_tissue_classes)
* nuclei_binary_map: Raw binary cell segmentation predictions. Shape: (batch_size, 2, H, W)
* hv_map: Binary HV Map predictions. Shape: (batch_size, 2, H, W)
* nuclei_type_map: Raw binary nuclei type preditcions. Shape: (batch_size, num_nuclei_classes, H, W)
* (optinal) tokens
"""
out_dict = {}
#x = x.to(torch.bfloat16)
#self.encoder = self.encoder.to(torch.bfloat16)
classifier_logits, z, input_feature = self.encoder(x)
#classifier_logits = classifier_logits.to(torch.bfloat16)
#z = [z.to(torch.bfloat16) for z in z]
#input_feature = [input_feature.to(torch.bfloat16) for input_feature in input_feature]
# if torch.any(torch.tensor([torch.any(torch.isnan(t)) for t in z])):
# print("z is nan")
out_dict["tissue_types"] = classifier_logits
decoder_output = self.decoder(z,input_feature)
#decoder_output = decoder_output.to(torch.bfloat16)
# if torch.isnan(decoder_output).any():
# print("decoder_output is nan")
out_dict["nuclei_binary_map"] = self.nuclei_binary_segmentation_head(decoder_output)
out_dict["hv_map"] = self.hv_map_head(decoder_output)
out_dict["nuclei_type_map"] = self.nuclei_type_maps_head(decoder_output)
return out_dict
def load_pretrained_encoder(self, model256_path: str):
"""Load pretrained ViT-256 from provided path
Args:
model256_path (str): Path to ViT-256
"""
state_dict = torch.load(str(model256_path), map_location="cpu")
state_dict = {key: value for key, value in state_dict.items() if not key.startswith("head")}
msg = self.encoder.load_state_dict(state_dict, strict=False)
print(f"Loading checkpoint: {msg}")
def reshape_model_output(
self,
predictions: OrderedDict,
device: str,
) -> OrderedDict:
predictions = OrderedDict(
[
[k, v.permute(0, 2, 3, 1).contiguous().to(device)]
for k, v in predictions.items()
if k != "tissue_types"
]
)
return predictions
def calculate_instance_map(
self, predictions: OrderedDict, magnification: Literal[20, 40] = 40
) -> Tuple[torch.Tensor, List[dict]]:
"""Calculate Instance Map from network predictions (after Softmax output)
Args:
predictions (dict): Dictionary with the following required keys:
* nuclei_binary_map: Binary Nucleus Predictions. Shape: (batch_size, H, W, 2)
* nuclei_type_map: Type prediction of nuclei. Shape: (batch_size, H, W, 6)
* hv_map: Horizontal-Vertical nuclei mapping. Shape: (batch_size, H, W, 2)
magnification (Literal[20, 40], optional): Which magnification the data has. Defaults to 40.
Returns:
Tuple[torch.Tensor, List[dict]]:
* torch.Tensor: Instance map. Each Instance has own integer. Shape: (batch_size, H, W)
* List of dictionaries. Each List entry is one image. Each dict contains another dict for each detected nucleus.
For each nucleus, the following information are returned: "bbox", "centroid", "contour", "type_prob", "type"
"""
# reshape to B, H, W, C
predictions_ = predictions.copy()
predictions_["nuclei_type_map"] = predictions_["nuclei_type_map"].permute(
0, 2, 3, 1
)
predictions_["nuclei_binary_map"] = predictions_["nuclei_binary_map"].permute(
0, 2, 3, 1
)
predictions_["hv_map"] = predictions_["hv_map"].permute(0, 2, 3, 1)
predictions = predictions_
cell_post_processor = DetectionCellPostProcessor(
nr_types=self.num_nuclei_classes, magnification=magnification, gt=False
)
instance_preds = []
type_preds = []
for i in range(predictions["nuclei_binary_map"].shape[0]):
pred_map = np.concatenate(
[
torch.argmax(predictions["nuclei_type_map"], dim=-1)[i]
.detach()
.cpu()[..., None],
torch.argmax(predictions["nuclei_binary_map"], dim=-1)[i]
.detach()
.cpu()[..., None],
predictions["hv_map"][i].detach().cpu(),
],
axis=-1,
)
instance_pred = cell_post_processor.post_process_cell_segmentation(pred_map)
instance_preds.append(instance_pred[0])
type_preds.append(instance_pred[1])
return torch.Tensor(np.stack(instance_preds)), type_preds
def generate_instance_nuclei_map(
self, instance_maps: torch.Tensor, type_preds: List[dict]
) -> torch.Tensor:
"""Convert instance map (binary) to nuclei type instance map
Args:
instance_maps (torch.Tensor): Binary instance map, each instance has own integer. Shape: (batch_size, H, W)
type_preds (List[dict]): List (len=batch_size) of dictionary with instance type information (compare post_process_hovernet function for more details)
Returns:
torch.Tensor: Nuclei type instance map. Shape: (batch_size, H, W, self.num_nuclei_classes)
"""
batch_size, h, w = instance_maps.shape
instance_type_nuclei_maps = torch.zeros(
(batch_size, h, w, self.num_nuclei_classes)
)
for i in range(batch_size):
instance_type_nuclei_map = torch.zeros((h, w, self.num_nuclei_classes))
instance_map = instance_maps[i]
type_pred = type_preds[i]
for nuclei, spec in type_pred.items():
nuclei_type = spec["type"]
instance_type_nuclei_map[:, :, nuclei_type][
instance_map == nuclei
] = nuclei
instance_type_nuclei_maps[i, :, :, :] = instance_type_nuclei_map
return instance_type_nuclei_maps
def freeze_encoder(self):
"""Freeze encoder to not train it """
for layer_name, p in self.encoder.named_parameters():
if layer_name.split(".")[0] != "head":
p.requires_grad = False
def unfreeze_encoder(self):
"""Unfreeze encoder to train the whole model """
for p in self.encoder.parameters():
p.requires_grad = True
@dataclass
class DataclassHVStorage:
"""Storing PanNuke Prediction/GT objects for calculating loss, metrics etc. with HoverNet networks
Args:
nuclei_binary_map (torch.Tensor): Softmax output for binary nuclei branch. Shape: (batch_size, 2, H, W)
hv_map (torch.Tensor): Logit output for HV-Map. Shape: (batch_size, 2, H, W)
nuclei_type_map (torch.Tensor): Softmax output for nuclei type-prediction. Shape: (batch_size, num_tissue_classes, H, W)
tissue_types (torch.Tensor): Logit tissue prediction output. Shape: (batch_size, num_tissue_classes)
instance_map (torch.Tensor): Pixel-wise nuclear instance segmentation.
Each instance has its own integer, starting from 1. Shape: (batch_size, H, W)
instance_types_nuclei: Pixel-wise nuclear instance segmentation predictions, for each nuclei type.
Each instance has its own integer, starting from 1.
Shape: (batch_size, num_nuclei_classes, H, W)
batch_size (int): Batch size of the experiment
instance_types (list, optional): Instance type prediction list.
Each list entry stands for one image. Each list entry is a dictionary with the following structure:
Main Key is the nuclei instance number (int), with a dict as value.
For each instance, the dictionary contains the keys: bbox (bounding box), centroid (centroid coordinates),
contour, type_prob (probability), type (nuclei type)
Defaults to None.
regression_map (torch.Tensor, optional): Regression map for binary prediction map.
Shape: (batch_size, 2, H, W). Defaults to None.
regression_loss (bool, optional): Indicating if regression map is present. Defaults to False.
h (int, optional): Height of used input images. Defaults to 256.
w (int, optional): Width of used input images. Defaults to 256.
num_tissue_classes (int, optional): Number of tissue classes in the data. Defaults to 19.
num_nuclei_classes (int, optional): Number of nuclei types in the data (including background). Defaults to 6.
"""
nuclei_binary_map: torch.Tensor
hv_map: torch.Tensor
tissue_types: torch.Tensor
nuclei_type_map: torch.Tensor
instance_map: torch.Tensor
instance_types_nuclei: torch.Tensor
batch_size: int
instance_types: list = None
regression_map: torch.Tensor = None
regression_loss: bool = False
h: int = 256
w: int = 256
num_tissue_classes: int = 19
num_nuclei_classes: int = 6
def get_dict(self) -> dict:
"""Return dictionary of entries"""
property_dict = self.__dict__
if not self.regression_loss and "regression_map" in property_dict.keys():
property_dict.pop("regression_map")
return property_dict
|