Spaces:
Running
Running
File size: 13,165 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# -*- coding: utf-8 -*-
# PostProcessing Pipeline
#
# Adapted from HoverNet
# HoverNet Network (https://doi.org/10.1016/j.media.2019.101563)
# Code Snippet adapted from HoverNet implementation (https://github.com/vqdang/hover_net)
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import warnings
from typing import Tuple, Literal,List
import cv2
import numpy as np
from scipy.ndimage import measurements
from scipy.ndimage.morphology import binary_fill_holes
from skimage.segmentation import watershed
import torch
from .tools import get_bounding_box, remove_small_objects
def noop(*args, **kargs):
pass
warnings.warn = noop
class DetectionCellPostProcessor:
def __init__(
self,
nr_types: int = None,
magnification: Literal[20, 40] = 40,
gt: bool = False,
) -> None:
"""DetectionCellPostProcessor for postprocessing prediction maps and get detected cells
Args:
nr_types (int, optional): Number of cell types, including background (background = 0). Defaults to None.
magnification (Literal[20, 40], optional): Which magnification the data has. Defaults to 40.
gt (bool, optional): If this is gt data (used that we do not suppress tiny cells that may be noise in a prediction map).
Defaults to False.
Raises:
NotImplementedError: Unknown magnification
"""
self.nr_types = nr_types
self.magnification = magnification
self.gt = gt
if magnification == 40:
self.object_size = 10
self.k_size = 21
elif magnification == 20:
self.object_size = 3 # 3 or 40, we used 5
self.k_size = 11 # 11 or 41, we used 13
else:
raise NotImplementedError("Unknown magnification")
if gt: # to not supress something in gt!
self.object_size = 100
self.k_size = 21
def post_process_cell_segmentation(
self,
pred_map: np.ndarray,
) -> Tuple[np.ndarray, dict]:
"""Post processing of one image tile
Args:
pred_map (np.ndarray): Combined output of tp, np and hv branches, in the same order. Shape: (H, W, 4)
Returns:
Tuple[np.ndarray, dict]:
np.ndarray: Instance map for one image. Each nuclei has own integer. Shape: (H, W)
dict: Instance dictionary. Main Key is the nuclei instance number (int), with a dict as value.
For each instance, the dictionary contains the keys: bbox (bounding box), centroid (centroid coordinates),
contour, type_prob (probability), type (nuclei type)
"""
if self.nr_types is not None:
pred_type = pred_map[..., :1]
pred_inst = pred_map[..., 1:]
pred_type = pred_type.astype(np.int32)
else:
pred_inst = pred_map
pred_inst = np.squeeze(pred_inst)
pred_inst = self.__proc_np_hv(
pred_inst, object_size=self.object_size, ksize=self.k_size
)
inst_id_list = np.unique(pred_inst)[1:] # exlcude background
inst_info_dict = {}
for inst_id in inst_id_list:
inst_map = pred_inst == inst_id
rmin, rmax, cmin, cmax = get_bounding_box(inst_map)
inst_bbox = np.array([[rmin, cmin], [rmax, cmax]])
inst_map = inst_map[
inst_bbox[0][0] : inst_bbox[1][0], inst_bbox[0][1] : inst_bbox[1][1]
]
inst_map = inst_map.astype(np.uint8)
inst_moment = cv2.moments(inst_map)
inst_contour = cv2.findContours(
inst_map, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# * opencv protocol format may break
inst_contour = np.squeeze(inst_contour[0][0].astype("int32"))
# < 3 points dont make a contour, so skip, likely artifact too
# as the contours obtained via approximation => too small or sthg
if inst_contour.shape[0] < 3:
continue
if len(inst_contour.shape) != 2:
continue # ! check for trickery shape
inst_centroid = [
(inst_moment["m10"] / inst_moment["m00"]),
(inst_moment["m01"] / inst_moment["m00"]),
]
inst_centroid = np.array(inst_centroid)
inst_contour[:, 0] += inst_bbox[0][1] # X
inst_contour[:, 1] += inst_bbox[0][0] # Y
inst_centroid[0] += inst_bbox[0][1] # X
inst_centroid[1] += inst_bbox[0][0] # Y
inst_info_dict[inst_id] = { # inst_id should start at 1
"bbox": inst_bbox,
"centroid": inst_centroid,
"contour": inst_contour,
"type_prob": None,
"type": None,
}
#### * Get class of each instance id, stored at index id-1 (inst_id = number of deteced nucleus)
for inst_id in list(inst_info_dict.keys()):
rmin, cmin, rmax, cmax = (inst_info_dict[inst_id]["bbox"]).flatten()
inst_map_crop = pred_inst[rmin:rmax, cmin:cmax]
inst_type_crop = pred_type[rmin:rmax, cmin:cmax]
inst_map_crop = inst_map_crop == inst_id
inst_type = inst_type_crop[inst_map_crop]
type_list, type_pixels = np.unique(inst_type, return_counts=True)
type_list = list(zip(type_list, type_pixels))
type_list = sorted(type_list, key=lambda x: x[1], reverse=True)
inst_type = type_list[0][0]
if inst_type == 0: # ! pick the 2nd most dominant if exist
if len(type_list) > 1:
inst_type = type_list[1][0]
type_dict = {v[0]: v[1] for v in type_list}
type_prob = type_dict[inst_type] / (np.sum(inst_map_crop) + 1.0e-6)
inst_info_dict[inst_id]["type"] = int(inst_type)
inst_info_dict[inst_id]["type_prob"] = float(type_prob)
return pred_inst, inst_info_dict
def __proc_np_hv(
self, pred: np.ndarray, object_size: int = 10, ksize: int = 21
) -> np.ndarray:
"""Process Nuclei Prediction with XY Coordinate Map and generate instance map (each instance has unique integer)
Separate Instances (also overlapping ones) from binary nuclei map and hv map by using morphological operations and watershed
Args:
pred (np.ndarray): Prediction output, assuming. Shape: (H, W, 3)
* channel 0 contain probability map of nuclei
* channel 1 containing the regressed X-map
* channel 2 containing the regressed Y-map
object_size (int, optional): Smallest oject size for filtering. Defaults to 10
k_size (int, optional): Sobel Kernel size. Defaults to 21
Returns:
np.ndarray: Instance map for one image. Each nuclei has own integer. Shape: (H, W)
"""
pred = np.array(pred, dtype=np.float32)
blb_raw = pred[..., 0]
h_dir_raw = pred[..., 1]
v_dir_raw = pred[..., 2]
# processing
blb = np.array(blb_raw >= 0.5, dtype=np.int32)
blb = measurements.label(blb)[0] # ndimage.label(blb)[0]
blb = remove_small_objects(blb, min_size=10) # 10
blb[blb > 0] = 1 # background is 0 already
h_dir = cv2.normalize(
h_dir_raw,
None,
alpha=0,
beta=1,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_32F,
)
v_dir = cv2.normalize(
v_dir_raw,
None,
alpha=0,
beta=1,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_32F,
)
# ksize = int((20 * scale_factor) + 1) # 21 vs 41
# obj_size = math.ceil(10 * (scale_factor**2)) #10 vs 40
sobelh = cv2.Sobel(h_dir, cv2.CV_64F, 1, 0, ksize=ksize)
sobelv = cv2.Sobel(v_dir, cv2.CV_64F, 0, 1, ksize=ksize)
sobelh = 1 - (
cv2.normalize(
sobelh,
None,
alpha=0,
beta=1,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_32F,
)
)
sobelv = 1 - (
cv2.normalize(
sobelv,
None,
alpha=0,
beta=1,
norm_type=cv2.NORM_MINMAX,
dtype=cv2.CV_32F,
)
)
overall = np.maximum(sobelh, sobelv)
overall = overall - (1 - blb)
overall[overall < 0] = 0
dist = (1.0 - overall) * blb
## nuclei values form mountains so inverse to get basins
dist = -cv2.GaussianBlur(dist, (3, 3), 0)
overall = np.array(overall >= 0.4, dtype=np.int32)
marker = blb - overall
marker[marker < 0] = 0
marker = binary_fill_holes(marker).astype("uint8")
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
marker = cv2.morphologyEx(marker, cv2.MORPH_OPEN, kernel)
marker = measurements.label(marker)[0]
marker = remove_small_objects(marker, min_size=object_size)
proced_pred = watershed(dist, markers=marker, mask=blb)
return proced_pred
def calculate_instances(
pred_types: torch.Tensor, pred_insts: torch.Tensor
) -> List[dict]:
"""Best used for GT
Args:
pred_types (torch.Tensor): Binary or type map ground-truth.
Shape must be (B, C, H, W) with C=1 for binary or num_nuclei_types for multi-class.
pred_insts (torch.Tensor): Ground-Truth instance map with shape (B, H, W)
Returns:
list[dict]: Dictionary with nuclei informations, output similar to post_process_cell_segmentation
"""
type_preds = []
pred_types = pred_types.permute(0, 2, 3, 1)
for i in range(pred_types.shape[0]):
pred_type = torch.argmax(pred_types, dim=-1)[i].detach().cpu().numpy()
pred_inst = pred_insts[i].detach().cpu().numpy()
inst_id_list = np.unique(pred_inst)[1:] # exlcude background
inst_info_dict = {}
for inst_id in inst_id_list:
inst_map = pred_inst == inst_id
rmin, rmax, cmin, cmax = get_bounding_box(inst_map)
inst_bbox = np.array([[rmin, cmin], [rmax, cmax]])
inst_map = inst_map[
inst_bbox[0][0] : inst_bbox[1][0], inst_bbox[0][1] : inst_bbox[1][1]
]
inst_map = inst_map.astype(np.uint8)
inst_moment = cv2.moments(inst_map)
inst_contour = cv2.findContours(
inst_map, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# * opencv protocol format may break
inst_contour = np.squeeze(inst_contour[0][0].astype("int32"))
# < 3 points dont make a contour, so skip, likely artifact too
# as the contours obtained via approximation => too small or sthg
if inst_contour.shape[0] < 3:
continue
if len(inst_contour.shape) != 2:
continue # ! check for trickery shape
inst_centroid = [
(inst_moment["m10"] / inst_moment["m00"]),
(inst_moment["m01"] / inst_moment["m00"]),
]
inst_centroid = np.array(inst_centroid)
inst_contour[:, 0] += inst_bbox[0][1] # X
inst_contour[:, 1] += inst_bbox[0][0] # Y
inst_centroid[0] += inst_bbox[0][1] # X
inst_centroid[1] += inst_bbox[0][0] # Y
inst_info_dict[inst_id] = { # inst_id should start at 1
"bbox": inst_bbox,
"centroid": inst_centroid,
"contour": inst_contour,
"type_prob": None,
"type": None,
}
#### * Get class of each instance id, stored at index id-1 (inst_id = number of deteced nucleus)
for inst_id in list(inst_info_dict.keys()):
rmin, cmin, rmax, cmax = (inst_info_dict[inst_id]["bbox"]).flatten()
inst_map_crop = pred_inst[rmin:rmax, cmin:cmax]
inst_type_crop = pred_type[rmin:rmax, cmin:cmax]
inst_map_crop = inst_map_crop == inst_id
inst_type = inst_type_crop[inst_map_crop]
type_list, type_pixels = np.unique(inst_type, return_counts=True)
type_list = list(zip(type_list, type_pixels))
type_list = sorted(type_list, key=lambda x: x[1], reverse=True)
inst_type = type_list[0][0]
if inst_type == 0: # ! pick the 2nd most dominant if exist
if len(type_list) > 1:
inst_type = type_list[1][0]
type_dict = {v[0]: v[1] for v in type_list}
type_prob = type_dict[inst_type] / (np.sum(inst_map_crop) + 1.0e-6)
inst_info_dict[inst_id]["type"] = int(inst_type)
inst_info_dict[inst_id]["type_prob"] = float(type_prob)
type_preds.append(inst_info_dict)
return type_preds
|