Spaces:
Running
Running
File size: 16,974 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# -*- coding: utf-8 -*-
# StarDist Experiment Class
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import inspect
import os
import sys
import yaml
from base_ml.base_trainer import BaseTrainer
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
from pathlib import Path
from typing import Callable, Tuple, Union
import torch
import torch.nn as nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import (
ConstantLR,
CosineAnnealingLR,
ExponentialLR,
ReduceLROnPlateau,
SequentialLR,
_LRScheduler,
)
from torch.utils.data import Dataset
from torchinfo import summary
from base_ml.base_loss import retrieve_loss_fn
from cell_unireplknet.cell_segmentation.experiments.experiment_cellvit_pannuke_origin import (
ExperimentCellVitPanNuke,
)
from cell_segmentation.trainer.trainer_stardist import CellViTStarDistTrainer
from models.segmentation.cell_segmentation.cellvit_stardist import (
CellViTStarDist,
CellViT256StarDist,
CellViTSAMStarDist,
)
from models.segmentation.cell_segmentation.cellvit_stardist_shared import (
CellViTStarDistShared,
CellViT256StarDistShared,
CellViTSAMStarDistShared,
)
from models.segmentation.cell_segmentation.cpp_net_stardist_rn50 import StarDistRN50
class ExperimentCellViTStarDist(ExperimentCellVitPanNuke):
def load_dataset_setup(self, dataset_path: Union[Path, str]) -> None:
"""Load the configuration of the PanNuke cell segmentation dataset.
The dataset must have a dataset_config.yaml file in their dataset path with the following entries:
* tissue_types: describing the present tissue types with corresponding integer
* nuclei_types: describing the present nuclei types with corresponding integer
Args:
dataset_path (Union[Path, str]): Path to dataset folder
"""
dataset_config_path = Path(dataset_path) / "dataset_config.yaml"
with open(dataset_config_path, "r") as dataset_config_file:
yaml_config = yaml.safe_load(dataset_config_file)
self.dataset_config = dict(yaml_config)
def get_loss_fn(self, loss_fn_settings: dict) -> dict:
"""Create a dictionary with loss functions for all branches
Branches: "dist_map", "stardist_map", "nuclei_type_map", "tissue_types"
Args:
loss_fn_settings (dict): Dictionary with the loss function settings. Structure
branch_name(str):
loss_name(str):
loss_fn(str): String matching to the loss functions defined in the LOSS_DICT (base_ml.base_loss)
weight(float): Weighting factor as float value
(optional) args: Optional parameters for initializing the loss function
arg_name: value
If a branch is not provided, the defaults settings (described below) are used.
For further information, please have a look at the file configs/examples/cell_segmentation/train_cellvit.yaml
under the section "loss"
Example:
nuclei_type_map:
bce:
loss_fn: xentropy_loss
weight: 1
dice:
loss_fn: dice_loss
weight: 1
Returns:
dict: Dictionary with loss functions for each branch. Structure:
branch_name(str):
loss_name(str):
"loss_fn": Callable loss function
"weight": weight of the loss since in the end all losses of all branches are added together for backward pass
loss_name(str):
"loss_fn": Callable loss function
"weight": weight of the loss since in the end all losses of all branches are added together for backward pass
branch_name(str)
...
Default loss dictionary:
dist_map:
bceweighted:
loss_fn: BCEWithLogitsLoss
weight: 1
stardist_map:
L1LossWeighted:
loss_fn: L1LossWeighted
weight: 1
nuclei_type_map
bce:
loss_fn: xentropy_loss
weight: 1
dice:
loss_fn: dice_loss
weight: 1
tissue_type has no default loss and might be skipped
"""
loss_fn_dict = {}
if "dist_map" in loss_fn_settings.keys():
loss_fn_dict["dist_map"] = {}
for loss_name, loss_sett in loss_fn_settings["dist_map"].items():
parameters = loss_sett.get("args", {})
loss_fn_dict["dist_map"][loss_name] = {
"loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
"weight": loss_sett["weight"],
}
else:
loss_fn_dict["dist_map"] = {
"bceweighted": {
"loss_fn": retrieve_loss_fn("BCEWithLogitsLoss"),
"weight": 1,
},
}
if "stardist_map" in loss_fn_settings.keys():
loss_fn_dict["stardist_map"] = {}
for loss_name, loss_sett in loss_fn_settings["stardist_map"].items():
parameters = loss_sett.get("args", {})
loss_fn_dict["stardist_map"][loss_name] = {
"loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
"weight": loss_sett["weight"],
}
else:
loss_fn_dict["stardist_map"] = {
"L1LossWeighted": {
"loss_fn": retrieve_loss_fn("L1LossWeighted"),
"weight": 1,
},
}
if "nuclei_type_map" in loss_fn_settings.keys():
loss_fn_dict["nuclei_type_map"] = {}
for loss_name, loss_sett in loss_fn_settings["nuclei_type_map"].items():
parameters = loss_sett.get("args", {})
loss_fn_dict["nuclei_type_map"][loss_name] = {
"loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
"weight": loss_sett["weight"],
}
else:
loss_fn_dict["nuclei_type_map"] = {
"bce": {"loss_fn": retrieve_loss_fn("xentropy_loss"), "weight": 1},
"dice": {"loss_fn": retrieve_loss_fn("dice_loss"), "weight": 1},
}
if "tissue_types" in loss_fn_settings.keys():
loss_fn_dict["tissue_types"] = {}
for loss_name, loss_sett in loss_fn_settings["tissue_types"].items():
parameters = loss_sett.get("args", {})
loss_fn_dict["tissue_types"][loss_name] = {
"loss_fn": retrieve_loss_fn(loss_sett["loss_fn"], **parameters),
"weight": loss_sett["weight"],
}
# skip default tissue loss!
return loss_fn_dict
def get_scheduler(self, scheduler_type: str, optimizer: Optimizer) -> _LRScheduler:
"""Get the learning rate scheduler for CellViT
The configuration of the scheduler is given in the "training" -> "scheduler" section.
Currenlty, "constant", "exponential" and "cosine" schedulers are implemented.
Required parameters for implemented schedulers:
- "constant": None
- "exponential": gamma (optional, defaults to 0.95)
- "cosine": eta_min (optional, defaults to 1-e5)
- "reducelronplateau": everything hardcoded right now, uses vall los for checking
Args:
scheduler_type (str): Type of scheduler as a string. Currently implemented:
- "constant" (lowering by a factor of ten after 25 epochs, increasing after 50, decreasimg again after 75)
- "exponential" (ExponentialLR with given gamma, gamma defaults to 0.95)
- "cosine" (CosineAnnealingLR, eta_min as parameter, defaults to 1-e5)
optimizer (Optimizer): Optimizer
Returns:
_LRScheduler: PyTorch Scheduler
"""
implemented_schedulers = [
"constant",
"exponential",
"cosine",
"reducelronplateau",
]
if scheduler_type.lower() not in implemented_schedulers:
self.logger.warning(
f"Unknown Scheduler - No scheduler from the list {implemented_schedulers} select. Using default scheduling."
)
if scheduler_type.lower() == "constant":
scheduler = SequentialLR(
optimizer=optimizer,
schedulers=[
ConstantLR(optimizer, factor=1, total_iters=25),
ConstantLR(optimizer, factor=0.1, total_iters=25),
ConstantLR(optimizer, factor=1, total_iters=25),
ConstantLR(optimizer, factor=0.1, total_iters=1000),
],
milestones=[24, 49, 74],
)
elif scheduler_type.lower() == "exponential":
scheduler = ExponentialLR(
optimizer,
gamma=self.run_conf["training"]["scheduler"].get("gamma", 0.95),
)
elif scheduler_type.lower() == "cosine":
scheduler = CosineAnnealingLR(
optimizer,
T_max=self.run_conf["training"]["epochs"],
eta_min=self.run_conf["training"]["scheduler"].get("eta_min", 1e-5),
)
elif scheduler_type.lower() == "reducelronplateau":
scheduler = ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.5,
min_lr=0.0000001,
patience=10,
threshold=1e-20,
)
else:
scheduler = super().get_scheduler(optimizer)
return scheduler
def get_datasets(
self,
train_transforms: Callable = None,
val_transforms: Callable = None,
) -> Tuple[Dataset, Dataset]:
"""Retrieve training dataset and validation dataset
Args:
dataset_name (str): Name of dataset to use
train_transforms (Callable, optional): PyTorch transformations for train set. Defaults to None.
val_transforms (Callable, optional): PyTorch transformations for validation set. Defaults to None.
Returns:
Tuple[Dataset, Dataset]: Training dataset and validation dataset
"""
self.run_conf["data"]["stardist"] = True
train_dataset, val_dataset = super().get_datasets(
train_transforms=train_transforms,
val_transforms=val_transforms,
)
return train_dataset, val_dataset
def get_train_model(
self,
pretrained_encoder: Union[Path, str] = None,
pretrained_model: Union[Path, str] = None,
backbone_type: str = "default",
shared_decoders: bool = False,
**kwargs,
) -> nn.Module:
"""Return the CellViTStarDist training model
Args:
pretrained_encoder (Union[Path, str]): Path to a pretrained encoder. Defaults to None.
pretrained_model (Union[Path, str], optional): Path to a pretrained model. Defaults to None.
backbone_type (str, optional): Backbone Type. Currently supported are default (None, ViT256, SAM-B, SAM-L, SAM-H, RN50). Defaults to None
shared_decoders (bool, optional): If shared skip decoders should be used. Defaults to False.
Returns:
nn.Module: StarDist training model with given setup
"""
# reseed needed, due to subprocess seeding compatibility
self.seed_run(self.default_conf["random_seed"])
# check for backbones
implemented_backbones = ["default", "vit256", "sam-b", "sam-l", "sam-h", "rn50"]
if backbone_type.lower() not in implemented_backbones:
raise NotImplementedError(
f"Unknown Backbone Type - Currently supported are: {implemented_backbones}"
)
if backbone_type.lower() == "default":
if shared_decoders:
model_class = CellViTStarDistShared
else:
model_class = CellViTStarDist
model = model_class(
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
embed_dim=self.run_conf["model"]["embed_dim"],
input_channels=self.run_conf["model"].get("input_channels", 3),
depth=self.run_conf["model"]["depth"],
num_heads=self.run_conf["model"]["num_heads"],
extract_layers=self.run_conf["model"]["extract_layers"],
drop_rate=self.run_conf["training"].get("drop_rate", 0),
attn_drop_rate=self.run_conf["training"].get("attn_drop_rate", 0),
drop_path_rate=self.run_conf["training"].get("drop_path_rate", 0),
nrays=self.run_conf["model"].get("nrays", 32),
)
if pretrained_model is not None:
self.logger.info(
f"Loading pretrained CellViT model from path: {pretrained_model}"
)
cellvit_pretrained = torch.load(pretrained_model)
self.logger.info(model.load_state_dict(cellvit_pretrained, strict=True))
self.logger.info("Loaded CellViT model")
if backbone_type.lower() == "vit256":
if shared_decoders:
model_class = CellViT256StarDistShared
else:
model_class = CellViT256StarDist
model = model_class(
model256_path=pretrained_encoder,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
drop_rate=self.run_conf["training"].get("drop_rate", 0),
attn_drop_rate=self.run_conf["training"].get("attn_drop_rate", 0),
drop_path_rate=self.run_conf["training"].get("drop_path_rate", 0),
nrays=self.run_conf["model"].get("nrays", 32),
)
model.load_pretrained_encoder(model.model256_path)
if pretrained_model is not None:
self.logger.info(
f"Loading pretrained CellViT model from path: {pretrained_model}"
)
cellvit_pretrained = torch.load(pretrained_model, map_location="cpu")
self.logger.info(model.load_state_dict(cellvit_pretrained, strict=True))
model.freeze_encoder()
self.logger.info("Loaded CellVit256 model")
if backbone_type.lower() in ["sam-b", "sam-l", "sam-h"]:
if shared_decoders:
model_class = CellViTSAMStarDistShared
else:
model_class = CellViTSAMStarDist
model = model_class(
model_path=pretrained_encoder,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
vit_structure=backbone_type,
drop_rate=self.run_conf["training"].get("drop_rate", 0),
nrays=self.run_conf["model"].get("nrays", 32),
)
model.load_pretrained_encoder(model.model_path)
if pretrained_model is not None:
self.logger.info(
f"Loading pretrained CellViT model from path: {pretrained_model}"
)
cellvit_pretrained = torch.load(pretrained_model, map_location="cpu")
self.logger.info(model.load_state_dict(cellvit_pretrained, strict=True))
model.freeze_encoder()
self.logger.info(f"Loaded CellViT-SAM model with backbone: {backbone_type}")
if backbone_type.lower() == "rn50":
model = StarDistRN50(
n_rays=self.run_conf["model"].get("nrays", 32),
n_seg_cls=self.run_conf["data"]["num_nuclei_classes"],
)
self.logger.info(f"\nModel: {model}")
model = model.to("cpu")
self.logger.info(
f"\n{summary(model, input_size=(1, 3, 256, 256), device='cpu')}"
)
return model
def get_trainer(self) -> BaseTrainer:
"""Return Trainer matching to this network
Returns:
BaseTrainer: Trainer
"""
return CellViTStarDistTrainer
|