Spaces:
Running
Running
File size: 47,799 Bytes
aea73e2 f2d83f6 aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 |
# -*- coding: utf-8 -*-
# CellViT Inference Method for Patch-Wise Inference on a test set
# Without merging WSI
#
# Aim is to calculate metrics as defined for the PanNuke dataset
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import argparse
import inspect
import os
import sys
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.insert(0, parentdir)
from base_ml.base_experiment import BaseExperiment
BaseExperiment.seed_run(1232)
import json
from pathlib import Path
from typing import List, Tuple, Union
import albumentations as A
import numpy as np
import torch
import torch.nn.functional as F
import tqdm
import yaml
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw
from skimage.color import rgba2rgb
from sklearn.metrics import accuracy_score
from tabulate import tabulate
from torch.utils.data import DataLoader
from torchmetrics.functional import dice
from torchmetrics.functional.classification import binary_jaccard_index
from torchvision import transforms
from cell_segmentation.datasets.dataset_coordinator import select_dataset
from models.segmentation.cell_segmentation.cellvit import DataclassHVStorage
from cell_segmentation.utils.metrics import (
cell_detection_scores,
cell_type_detection_scores,
get_fast_pq,
remap_label,
binarize,
)
from cell_segmentation.utils.post_proc_cellvit import calculate_instances
from cell_segmentation.utils.tools import cropping_center, pair_coordinates
from models.segmentation.cell_segmentation.cellvit import CellViT
from utils.logger import Logger
class InferenceCellViT:
def __init__(
self,
run_dir: Union[Path, str],
gpu: int,
magnification: int = 40,
checkpoint_name: str = "model_best.pth",
) -> None:
"""Inference for HoverNet
Args:
run_dir (Union[Path, str]): logging directory with checkpoints and configs
gpu (int): CUDA GPU device to use for inference
magnification (int, optional): Dataset magnification. Defaults to 40.
checkpoint_name (str, optional): Select name of the model to load. Defaults to model_best.pth
"""
self.run_dir = Path(run_dir)
self.device = "cpu"
self.run_conf: dict = None
self.logger: Logger = None
self.magnification = magnification
self.checkpoint_name = checkpoint_name
self.__load_run_conf()
# self.__instantiate_logger()
self.__setup_amp()
self.num_classes = self.run_conf["data"]["num_nuclei_classes"]
def __load_run_conf(self) -> None:
"""Load the config.yaml file with the run setup
Be careful with loading and usage, since original None values in the run configuration are not stored when dumped to yaml file.
If you want to check if a key is not defined, first check if the key does exists in the dict.
"""
with open((self.run_dir / "config.yaml").resolve(), "r") as run_config_file:
yaml_config = yaml.safe_load(run_config_file)
self.run_conf = dict(yaml_config)
def __load_dataset_setup(self, dataset_path: Union[Path, str]) -> None:
"""Load the configuration of the cell segmentation dataset.
The dataset must have a dataset_config.yaml file in their dataset path with the following entries:
* tissue_types: describing the present tissue types with corresponding integer
* nuclei_types: describing the present nuclei types with corresponding integer
Args:
dataset_path (Union[Path, str]): Path to dataset folder
"""
dataset_config_path = Path(dataset_path) / "dataset_config.yaml"
with open(dataset_config_path, "r") as dataset_config_file:
yaml_config = yaml.safe_load(dataset_config_file)
self.dataset_config = dict(yaml_config)
def __instantiate_logger(self) -> None:
"""Instantiate logger
Logger is using no formatters. Logs are stored in the run directory under the filename: inference.log
"""
logger = Logger(
level=self.run_conf["logging"]["level"].upper(),
log_dir=Path(self.run_dir).resolve(),
comment="inference",
use_timestamp=False,
formatter="%(message)s",
)
self.logger = logger.create_logger()
def __check_eval_model(self) -> None:
"""Check if there is a best model pytorch file"""
assert (self.run_dir / "checkpoints" / self.checkpoint_name).is_file()
def __setup_amp(self) -> None:
"""Setup automated mixed precision (amp) for inference."""
self.mixed_precision = self.run_conf["training"].get("mixed_precision", False)
def get_model(
self, model_type: str
) -> CellViT:
"""Return the trained model for inference
Args:
model_type (str): Name of the model. Must either be one of:
CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared
Returns:
Union[CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared]: Model
"""
implemented_models = [
"CellViT",
]
if model_type not in implemented_models:
raise NotImplementedError(
f"Unknown model type. Please select one of {implemented_models}"
)
if model_type in ["CellViT", "CellViTShared"]:
if model_type == "CellViT":
model_class = CellViT
model = model_class(
model256_path=self.run_conf["model"].get("pretrained_encoder"),
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
#embed_dim=self.run_conf["model"]["embed_dim"],
in_channels=self.run_conf["model"].get("input_chanels", 3),
#embed_dim=self.run_conf["model"]["embed_dim"],
#input_channels=self.run_conf["model"].get("input_channels", 3),
#depth=self.run_conf["model"]["depth"],
#num_heads=self.run_conf["model"]["num_heads"],
#extract_layers=self.run_conf["model"]["extract_layers"],
#regression_loss=self.run_conf["model"].get("regression_loss", False),
)
return model
def setup_patch_inference(
self, test_folds: List[int] = None
) -> Tuple[
CellViT,
DataLoader,
dict,
]:
"""Setup patch inference by defining a patch-wise datalaoder and loading the model checkpoint
Args:
test_folds (List[int], optional): Test fold to use. Otherwise defined folds from config.yaml (in run_dir) are loaded. Defaults to None.
Returns:
tuple[Union[CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared], DataLoader, dict]:
Union[CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared]: Best model loaded form checkpoint
DataLoader: Inference DataLoader
dict: Dataset configuration. Keys are:
* "tissue_types": describing the present tissue types with corresponding integer
* "nuclei_types": describing the present nuclei types with corresponding integer
"""
# get dataset
if test_folds is None:
if "test_folds" in self.run_conf["data"]:
if self.run_conf["data"]["test_folds"] is None:
self.logger.info(
"There was no test set provided. We now use the validation dataset for testing"
)
self.run_conf["data"]["test_folds"] = self.run_conf["data"][
"val_folds"
]
else:
self.logger.info(
"There was no test set provided. We now use the validation dataset for testing"
)
self.run_conf["data"]["test_folds"] = self.run_conf["data"]["val_folds"]
else:
self.run_conf["data"]["test_folds"] = self.run_conf["data"]["val_folds"]
self.logger.info(
f"Performing Inference on test set: {self.run_conf['data']['test_folds']}"
)
inference_dataset = select_dataset(
dataset_name=self.run_conf["data"]["dataset"],
split="test",
dataset_config=self.run_conf["data"],
transforms=transforms,
)
inference_dataloader = DataLoader(
inference_dataset,
batch_size=1,
num_workers=12,
pin_memory=False,
shuffle=False,
)
return inference_dataloader, self.dataset_config
def run_patch_inference(
self,
model: CellViT,
inference_dataloader: DataLoader,
dataset_config: dict,
generate_plots: bool = False,
) -> None:
"""Run Patch inference with given setup
Args:
model (Union[CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared]): Model to use for inference
inference_dataloader (DataLoader): Inference Dataloader. Must return a batch with the following structure:
* Images (torch.Tensor)
* Masks (dict)
* Tissue types as str
* Image name as str
dataset_config (dict): Dataset configuration. Required keys are:
* "tissue_types": describing the present tissue types with corresponding integer
* "nuclei_types": describing the present nuclei types with corresponding integer
generate_plots (bool, optional): If inference plots should be generated. Defaults to False.
"""
# put model in eval mode
model.to(device=self.device)
model.eval()
# setup score tracker
image_names = [] # image names as str
binary_dice_scores = [] # binary dice scores per image
binary_jaccard_scores = [] # binary jaccard scores per image
pq_scores = [] # pq-scores per image
dq_scores = [] # dq-scores per image
sq_scores = [] # sq-scores per image
cell_type_pq_scores = [] # pq-scores per cell type and image
cell_type_dq_scores = [] # dq-scores per cell type and image
cell_type_sq_scores = [] # sq-scores per cell type and image
tissue_pred = [] # tissue predictions for each image
tissue_gt = [] # ground truth tissue image class
tissue_types_inf = [] # string repr of ground truth tissue image class
paired_all_global = [] # unique matched index pair
unpaired_true_all_global = (
[]
) # the index must exist in `true_inst_type_all` and unique
unpaired_pred_all_global = (
[]
) # the index must exist in `pred_inst_type_all` and unique
true_inst_type_all_global = [] # each index is 1 independent data point
pred_inst_type_all_global = [] # each index is 1 independent data point
# for detections scores
true_idx_offset = 0
pred_idx_offset = 0
inference_loop = tqdm.tqdm(
enumerate(inference_dataloader), total=len(inference_dataloader)
)
with torch.no_grad():
for batch_idx, batch in inference_loop:
batch_metrics = self.inference_step(
model, batch, generate_plots=generate_plots
)
# unpack batch_metrics
image_names = image_names + batch_metrics["image_names"]
# dice scores
binary_dice_scores = (
binary_dice_scores + batch_metrics["binary_dice_scores"]
)
binary_jaccard_scores = (
binary_jaccard_scores + batch_metrics["binary_jaccard_scores"]
)
# pq scores
pq_scores = pq_scores + batch_metrics["pq_scores"]
dq_scores = dq_scores + batch_metrics["dq_scores"]
sq_scores = sq_scores + batch_metrics["sq_scores"]
tissue_types_inf = tissue_types_inf + batch_metrics["tissue_types"]
cell_type_pq_scores = (
cell_type_pq_scores + batch_metrics["cell_type_pq_scores"]
)
cell_type_dq_scores = (
cell_type_dq_scores + batch_metrics["cell_type_dq_scores"]
)
cell_type_sq_scores = (
cell_type_sq_scores + batch_metrics["cell_type_sq_scores"]
)
tissue_pred.append(batch_metrics["tissue_pred"])
tissue_gt.append(batch_metrics["tissue_gt"])
# detection scores
true_idx_offset = (
true_idx_offset + true_inst_type_all_global[-1].shape[0]
if batch_idx != 0
else 0
)
pred_idx_offset = (
pred_idx_offset + pred_inst_type_all_global[-1].shape[0]
if batch_idx != 0
else 0
)
true_inst_type_all_global.append(batch_metrics["true_inst_type_all"])
pred_inst_type_all_global.append(batch_metrics["pred_inst_type_all"])
# increment the pairing index statistic
batch_metrics["paired_all"][:, 0] += true_idx_offset
batch_metrics["paired_all"][:, 1] += pred_idx_offset
paired_all_global.append(batch_metrics["paired_all"])
batch_metrics["unpaired_true_all"] += true_idx_offset
batch_metrics["unpaired_pred_all"] += pred_idx_offset
unpaired_true_all_global.append(batch_metrics["unpaired_true_all"])
unpaired_pred_all_global.append(batch_metrics["unpaired_pred_all"])
# assemble batches to datasets (global)
tissue_types_inf = [t.lower() for t in tissue_types_inf]
paired_all = np.concatenate(paired_all_global, axis=0)
unpaired_true_all = np.concatenate(unpaired_true_all_global, axis=0)
unpaired_pred_all = np.concatenate(unpaired_pred_all_global, axis=0)
true_inst_type_all = np.concatenate(true_inst_type_all_global, axis=0)
pred_inst_type_all = np.concatenate(pred_inst_type_all_global, axis=0)
paired_true_type = true_inst_type_all[paired_all[:, 0]]
paired_pred_type = pred_inst_type_all[paired_all[:, 1]]
unpaired_true_type = true_inst_type_all[unpaired_true_all]
unpaired_pred_type = pred_inst_type_all[unpaired_pred_all]
binary_dice_scores = np.array(binary_dice_scores)
binary_jaccard_scores = np.array(binary_jaccard_scores)
pq_scores = np.array(pq_scores)
dq_scores = np.array(dq_scores)
sq_scores = np.array(sq_scores)
tissue_detection_accuracy = accuracy_score(
y_true=np.concatenate(tissue_gt), y_pred=np.concatenate(tissue_pred)
)
f1_d, prec_d, rec_d = cell_detection_scores(
paired_true=paired_true_type,
paired_pred=paired_pred_type,
unpaired_true=unpaired_true_type,
unpaired_pred=unpaired_pred_type,
)
dataset_metrics = {
"Binary-Cell-Dice-Mean": float(np.nanmean(binary_dice_scores)),
"Binary-Cell-Jacard-Mean": float(np.nanmean(binary_jaccard_scores)),
"Tissue-Multiclass-Accuracy": tissue_detection_accuracy,
"bPQ": float(np.nanmean(pq_scores)),
"bDQ": float(np.nanmean(dq_scores)),
"bSQ": float(np.nanmean(sq_scores)),
"mPQ": float(np.nanmean([np.nanmean(pq) for pq in cell_type_pq_scores])),
"mDQ": float(np.nanmean([np.nanmean(dq) for dq in cell_type_dq_scores])),
"mSQ": float(np.nanmean([np.nanmean(sq) for sq in cell_type_sq_scores])),
"f1_detection": float(f1_d),
"precision_detection": float(prec_d),
"recall_detection": float(rec_d),
}
# calculate tissue metrics
tissue_types = dataset_config["tissue_types"]
tissue_metrics = {}
for tissue in tissue_types.keys():
tissue = tissue.lower()
tissue_ids = np.where(np.asarray(tissue_types_inf) == tissue)
tissue_metrics[f"{tissue}"] = {}
tissue_metrics[f"{tissue}"]["Dice"] = float(
np.nanmean(binary_dice_scores[tissue_ids])
)
tissue_metrics[f"{tissue}"]["Jaccard"] = float(
np.nanmean(binary_jaccard_scores[tissue_ids])
)
tissue_metrics[f"{tissue}"]["mPQ"] = float(
np.nanmean(
[np.nanmean(pq) for pq in np.array(cell_type_pq_scores)[tissue_ids]]
)
)
tissue_metrics[f"{tissue}"]["bPQ"] = float(
np.nanmean(pq_scores[tissue_ids])
)
# calculate nuclei metrics
nuclei_types = dataset_config["nuclei_types"]
nuclei_metrics_d = {}
nuclei_metrics_pq = {}
nuclei_metrics_dq = {}
nuclei_metrics_sq = {}
for nuc_name, nuc_type in nuclei_types.items():
if nuc_name.lower() == "background":
continue
nuclei_metrics_pq[nuc_name] = np.nanmean(
[pq[nuc_type] for pq in cell_type_pq_scores]
)
nuclei_metrics_dq[nuc_name] = np.nanmean(
[dq[nuc_type] for dq in cell_type_dq_scores]
)
nuclei_metrics_sq[nuc_name] = np.nanmean(
[sq[nuc_type] for sq in cell_type_sq_scores]
)
f1_cell, prec_cell, rec_cell = cell_type_detection_scores(
paired_true_type,
paired_pred_type,
unpaired_true_type,
unpaired_pred_type,
nuc_type,
)
nuclei_metrics_d[nuc_name] = {
"f1_cell": f1_cell,
"prec_cell": prec_cell,
"rec_cell": rec_cell,
}
# print final results
# binary
self.logger.info(f"{20*'*'} Binary Dataset metrics {20*'*'}")
[self.logger.info(f"{f'{k}:': <25} {v}") for k, v in dataset_metrics.items()]
# tissue -> the PQ values are bPQ values -> what about mBQ?
self.logger.info(f"{20*'*'} Tissue metrics {20*'*'}")
flattened_tissue = []
for key in tissue_metrics:
flattened_tissue.append(
[
key,
tissue_metrics[key]["Dice"],
tissue_metrics[key]["Jaccard"],
tissue_metrics[key]["mPQ"],
tissue_metrics[key]["bPQ"],
]
)
self.logger.info(
tabulate(
flattened_tissue, headers=["Tissue", "Dice", "Jaccard", "mPQ", "bPQ"]
)
)
# nuclei types
self.logger.info(f"{20*'*'} Nuclei Type Metrics {20*'*'}")
flattened_nuclei_type = []
for key in nuclei_metrics_pq:
flattened_nuclei_type.append(
[
key,
nuclei_metrics_dq[key],
nuclei_metrics_sq[key],
nuclei_metrics_pq[key],
]
)
self.logger.info(
tabulate(flattened_nuclei_type, headers=["Nuclei Type", "DQ", "SQ", "PQ"])
)
# nuclei detection metrics
self.logger.info(f"{20*'*'} Nuclei Detection Metrics {20*'*'}")
flattened_detection = []
for key in nuclei_metrics_d:
flattened_detection.append(
[
key,
nuclei_metrics_d[key]["prec_cell"],
nuclei_metrics_d[key]["rec_cell"],
nuclei_metrics_d[key]["f1_cell"],
]
)
self.logger.info(
tabulate(
flattened_detection,
headers=["Nuclei Type", "Precision", "Recall", "F1"],
)
)
# save all folds
image_metrics = {}
for idx, image_name in enumerate(image_names):
image_metrics[image_name] = {
"Dice": float(binary_dice_scores[idx]),
"Jaccard": float(binary_jaccard_scores[idx]),
"bPQ": float(pq_scores[idx]),
}
all_metrics = {
"dataset": dataset_metrics,
"tissue_metrics": tissue_metrics,
"image_metrics": image_metrics,
"nuclei_metrics_pq": nuclei_metrics_pq,
"nuclei_metrics_d": nuclei_metrics_d,
}
# saving
with open(str(self.run_dir / "inference_results.json"), "w") as outfile:
json.dump(all_metrics, outfile, indent=2)
def inference_step(
self,
model: CellViT,
batch: tuple,
generate_plots: bool = False,
) -> None:
"""Inference step for a patch-wise batch
Args:
model (CellViT): Model to use for inference
batch (tuple): Batch with the following structure:
* Images (torch.Tensor)
* Masks (dict)
* Tissue types as str
* Image name as str
generate_plots (bool, optional): If inference plots should be generated. Defaults to False.
"""
# unpack batch, for shape compare train_step method
imgs = batch[0].to(self.device)
masks = batch[1]
tissue_types = list(batch[2])
image_names = list(batch[3])
model.zero_grad()
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
predictions = model.forward(imgs)
else:
predictions = model.forward(imgs)
predictions = self.unpack_predictions(predictions=predictions, model=model)
gt = self.unpack_masks(masks=masks, tissue_types=tissue_types, model=model)
# scores
batch_metrics, scores = self.calculate_step_metric(predictions, gt, image_names)
batch_metrics["tissue_types"] = tissue_types
if generate_plots:
self.plot_results(
imgs=imgs,
predictions=predictions,
ground_truth=gt,
img_names=image_names,
num_nuclei_classes=self.num_classes,
outdir=Path(self.run_dir / "inference_predictions"),
scores=scores,
)
return batch_metrics
def run_single_image_inference( self, model: CellViT, image: np.ndarray, generate_plots: bool = True, ) -> None:
# set image transforms
transform_settings = self.run_conf["transformations"]
if "normalize" in transform_settings:
mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
else:
mean = (0.5, 0.5, 0.5)
std = (0.5, 0.5, 0.5)
transforms = A.Compose([A.Normalize(mean=mean, std=std)])
transformed_img = transforms(image=image)["image"]
image = torch.from_numpy(transformed_img).permute(2, 0, 1).unsqueeze(0).float()
imgs = image.to(self.device)
model.zero_grad()
predictions = model.forward(imgs)
predictions = self.unpack_predictions(predictions=predictions, model=model)
image_output = self.plot_results(
imgs=imgs,
predictions=predictions,
num_nuclei_classes=self.num_classes,
outdir=Path(self.run_dir),
)
return image_output
def unpack_predictions(
self, predictions: dict, model: CellViT
) -> DataclassHVStorage:
"""Unpack the given predictions. Main focus lays on reshaping and postprocessing predictions, e.g. separating instances
Args:
predictions (dict): Dictionary with the following keys:
* tissue_types: Logit tissue prediction output. Shape: (batch_size, num_tissue_classes)
* nuclei_binary_map: Logit output for binary nuclei prediction branch. Shape: (batch_size, H, W, 2)
* hv_map: Logit output for hv-prediction. Shape: (batch_size, H, W, 2)
* nuclei_type_map: Logit output for nuclei instance-prediction. Shape: (batch_size, num_nuclei_classes, H, W)
model (CellViT): Current model
Returns:
DataclassHVStorage: Processed network output
"""
predictions["tissue_types"] = predictions["tissue_types"].to(self.device)
predictions["nuclei_binary_map"] = F.softmax(
predictions["nuclei_binary_map"], dim=1
) # shape: (batch_size, 2, H, W)
predictions["nuclei_type_map"] = F.softmax(
predictions["nuclei_type_map"], dim=1
) # shape: (batch_size, num_nuclei_classes, H, W)
(
predictions["instance_map"],
predictions["instance_types"],
) = model.calculate_instance_map(
predictions, magnification=self.magnification
) # shape: (batch_size, H', W')
predictions["instance_types_nuclei"] = model.generate_instance_nuclei_map(
predictions["instance_map"], predictions["instance_types"]
).permute(0, 3, 1, 2).to(
self.device
) # shape: (batch_size, num_nuclei_classes, H, W) change
predictions = DataclassHVStorage(
nuclei_binary_map=predictions["nuclei_binary_map"], #[64, 2, 256, 256]
hv_map=predictions["hv_map"], #[64, 2, 256, 256]
nuclei_type_map=predictions["nuclei_type_map"], #[64, 6, 256, 256]
tissue_types=predictions["tissue_types"], #[64,19]
instance_map=predictions["instance_map"], #[64, 256, 256]
instance_types=predictions["instance_types"], #list of 64 tensors, each tensor is [256,256]
instance_types_nuclei=predictions["instance_types_nuclei"], #[64,256,256,6]
batch_size=predictions["tissue_types"].shape[0],#64
)
return predictions
def unpack_masks(
self, masks: dict, tissue_types: list, model: CellViT
) -> DataclassHVStorage:
# get ground truth values, perform one hot encoding for segmentation maps
gt_nuclei_binary_map_onehot = (
F.one_hot(masks["nuclei_binary_map"], num_classes=2)
).type(
torch.float32
) # background, nuclei #[64, 256,256,2]
nuclei_type_maps = torch.squeeze(masks["nuclei_type_map"]).type(torch.int64) #[64,256,256]
gt_nuclei_type_maps_onehot = F.one_hot(
nuclei_type_maps, num_classes=self.num_classes
).type(
torch.float32
) # background + nuclei types [64, 256, 256, 6]
# assemble ground truth dictionary
gt = {
"nuclei_type_map": gt_nuclei_type_maps_onehot.permute(0, 3, 1, 2).to(
self.device
), # shape: (batch_size, H, W, num_nuclei_classes) #[64,256,256,6] ->[64,6,256,256]
"nuclei_binary_map": gt_nuclei_binary_map_onehot.permute(0, 3, 1, 2).to(
self.device
), # shape: (batch_size, H, W, 2) #[64,256,256,2] ->[64,2,256,256]
"hv_map": masks["hv_map"].to(self.device), # shape: (batch_size, H, W, 2)原来的是错的 [64, 2, 256, 256]
"instance_map": masks["instance_map"].to(
self.device
), # shape: (batch_size, H, W) -> each instance has one integer (64,256,256)
"instance_types_nuclei": (
gt_nuclei_type_maps_onehot * masks["instance_map"][..., None]
)
.permute(0, 3, 1, 2)
.to(
self.device
), # shape: (batch_size, num_nuclei_classes, H, W) -> instance has one integer, for each nuclei class (64,256,256,6)
"tissue_types": torch.Tensor(
[self.dataset_config["tissue_types"][t] for t in tissue_types]
)
.type(torch.LongTensor)
.to(self.device), # shape: batch_size 64
}
gt["instance_types"] = calculate_instances(
gt["nuclei_type_map"], gt["instance_map"]
)
gt = DataclassHVStorage(**gt, batch_size=gt["tissue_types"].shape[0])
return gt
def calculate_step_metric(
self,
predictions: DataclassHVStorage,
gt: DataclassHVStorage,
image_names: List[str],
) -> Tuple[dict, list]:
"""Calculate the metrics for the validation step
Args:
predictions (DataclassHVStorage): Processed network output
gt (DataclassHVStorage): Ground truth values
image_names (list(str)): List with image names
Returns:
Tuple[dict, list]:
* dict: Dictionary with metrics. Structure not fixed yet
* list with cell_dice, cell_jaccard and pq for each image
"""
predictions = predictions.get_dict()
gt = gt.get_dict()
# preparation and device movement
predictions["tissue_types_classes"] = F.softmax(
predictions["tissue_types"], dim=-1
)
pred_tissue = (
torch.argmax(predictions["tissue_types_classes"], dim=-1)
.detach()
.cpu()
.numpy()
.astype(np.uint8)
)
predictions["instance_map"] = predictions["instance_map"].detach().cpu()
predictions["instance_types_nuclei"] = (
predictions["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
) # shape: (batch_size, num_nuclei_classes, H, W) [64,256,256,6]
instance_maps_gt = gt["instance_map"].detach().cpu() #[64,256,256]
gt["tissue_types"] = gt["tissue_types"].detach().cpu().numpy().astype(np.uint8)
gt["nuclei_binary_map"] = torch.argmax(gt["nuclei_binary_map"], dim=1).type(
torch.uint8
)
gt["instance_types_nuclei"] = (
gt["instance_types_nuclei"].detach().cpu().numpy().astype("int32")
) # shape: (batch_size, num_nuclei_classes, H, W) [64,6,256,256] ################################与前面的predictions的形状不同
# segmentation scores
binary_dice_scores = [] # binary dice scores per image
binary_jaccard_scores = [] # binary jaccard scores per image
pq_scores = [] # pq-scores per image
dq_scores = [] # dq-scores per image
sq_scores = [] # sq_scores per image
cell_type_pq_scores = [] # pq-scores per cell type and image
cell_type_dq_scores = [] # dq-scores per cell type and image
cell_type_sq_scores = [] # sq-scores per cell type and image
scores = [] # all scores in one list
# detection scores
paired_all = [] # unique matched index pair
unpaired_true_all = (
[]
) # the index must exist in `true_inst_type_all` and unique
unpaired_pred_all = (
[]
) # the index must exist in `pred_inst_type_all` and unique
true_inst_type_all = [] # each index is 1 independent data point
pred_inst_type_all = [] # each index is 1 independent data point
# for detections scores
true_idx_offset = 0
pred_idx_offset = 0
for i in range(len(pred_tissue)):
# binary dice score: Score for cell detection per image, without background
pred_binary_map = torch.argmax(predictions["nuclei_binary_map"][i], dim=0)
target_binary_map = gt["nuclei_binary_map"][i]
cell_dice = (
dice(preds=pred_binary_map, target=target_binary_map, ignore_index=0)
.detach()
.cpu()
)
binary_dice_scores.append(float(cell_dice))
# binary aji
cell_jaccard = (
binary_jaccard_index(
preds=pred_binary_map,
target=target_binary_map,
)
.detach()
.cpu()
)
binary_jaccard_scores.append(float(cell_jaccard))
# pq values
if len(np.unique(instance_maps_gt[i])) == 1:
dq, sq, pq = np.nan, np.nan, np.nan
else:
remapped_instance_pred = binarize(
predictions["instance_types_nuclei"][i][1:].transpose(1, 2, 0)
) #(256,6)
remapped_gt = remap_label(instance_maps_gt[i]) #(256,256)
# remapped_instance_pred = binarize(predictions["instance_types_nuclei"][i].transpose(2,1,0)[1:]) #[64,256,256,6]
[dq, sq, pq], _ = get_fast_pq(
true=remapped_gt, pred=remapped_instance_pred
) #(256,256) (256,256) true是instance map,在这里true的形状应该是真实的实例图,pred是预测的实例图,形状应该相等,都为(256,256)
pq_scores.append(pq)
dq_scores.append(dq)
sq_scores.append(sq)
scores.append(
[
cell_dice.detach().cpu().numpy(),
cell_jaccard.detach().cpu().numpy(),
pq,
]
)
# pq values per class (with class 0 beeing background -> should be skipped in the future)
nuclei_type_pq = []
nuclei_type_dq = []
nuclei_type_sq = []
for j in range(0, self.num_classes):
pred_nuclei_instance_class = remap_label(
predictions["instance_types_nuclei"][i][j, ...]
)
target_nuclei_instance_class = remap_label(
gt["instance_types_nuclei"][i][j, ...]
)
# if ground truth is empty, skip from calculation
if len(np.unique(target_nuclei_instance_class)) == 1:
pq_tmp = np.nan
dq_tmp = np.nan
sq_tmp = np.nan
else:
[dq_tmp, sq_tmp, pq_tmp], _ = get_fast_pq(
pred_nuclei_instance_class,
target_nuclei_instance_class,
match_iou=0.5,
)
nuclei_type_pq.append(pq_tmp)
nuclei_type_dq.append(dq_tmp)
nuclei_type_sq.append(sq_tmp)
# detection scores
true_centroids = np.array(
[v["centroid"] for k, v in gt["instance_types"][i].items()]
)
true_instance_type = np.array(
[v["type"] for k, v in gt["instance_types"][i].items()]
)
pred_centroids = np.array(
[v["centroid"] for k, v in predictions["instance_types"][i].items()]
)
pred_instance_type = np.array(
[v["type"] for k, v in predictions["instance_types"][i].items()]
)
if true_centroids.shape[0] == 0:
true_centroids = np.array([[0, 0]])
true_instance_type = np.array([0])
if pred_centroids.shape[0] == 0:
pred_centroids = np.array([[0, 0]])
pred_instance_type = np.array([0])
if self.magnification == 40:
pairing_radius = 12
else:
pairing_radius = 6
paired, unpaired_true, unpaired_pred = pair_coordinates(
true_centroids, pred_centroids, pairing_radius
)
true_idx_offset = (
true_idx_offset + true_inst_type_all[-1].shape[0] if i != 0 else 0
)
pred_idx_offset = (
pred_idx_offset + pred_inst_type_all[-1].shape[0] if i != 0 else 0
)
true_inst_type_all.append(true_instance_type)
pred_inst_type_all.append(pred_instance_type)
# increment the pairing index statistic
if paired.shape[0] != 0: # ! sanity
paired[:, 0] += true_idx_offset
paired[:, 1] += pred_idx_offset
paired_all.append(paired)
unpaired_true += true_idx_offset
unpaired_pred += pred_idx_offset
unpaired_true_all.append(unpaired_true)
unpaired_pred_all.append(unpaired_pred)
cell_type_pq_scores.append(nuclei_type_pq)
cell_type_dq_scores.append(nuclei_type_dq)
cell_type_sq_scores.append(nuclei_type_sq)
paired_all = np.concatenate(paired_all, axis=0)
unpaired_true_all = np.concatenate(unpaired_true_all, axis=0)
unpaired_pred_all = np.concatenate(unpaired_pred_all, axis=0)
true_inst_type_all = np.concatenate(true_inst_type_all, axis=0)
pred_inst_type_all = np.concatenate(pred_inst_type_all, axis=0)
batch_metrics = {
"image_names": image_names,
"binary_dice_scores": binary_dice_scores,
"binary_jaccard_scores": binary_jaccard_scores,
"pq_scores": pq_scores,
"dq_scores": dq_scores,
"sq_scores": sq_scores,
"cell_type_pq_scores": cell_type_pq_scores,
"cell_type_dq_scores": cell_type_dq_scores,
"cell_type_sq_scores": cell_type_sq_scores,
"tissue_pred": pred_tissue,
"tissue_gt": gt["tissue_types"],
"paired_all": paired_all,
"unpaired_true_all": unpaired_true_all,
"unpaired_pred_all": unpaired_pred_all,
"true_inst_type_all": true_inst_type_all,
"pred_inst_type_all": pred_inst_type_all,
}
return batch_metrics, scores
def plot_results(
self,
imgs: Union[torch.Tensor, np.ndarray],
predictions: dict,
num_nuclei_classes: int,
outdir: Union[Path, str],
) -> None:
# TODO: Adapt Docstring and function, currently not working with our shape
"""Generate example plot with image, binary_pred, hv-map and instance map from prediction and ground-truth
Args:
imgs (Union[torch.Tensor, np.ndarray]): Images to process, a random number (num_images) is selected from this stack
Shape: (batch_size, 3, H', W')
predictions (dict): Predictions of models. Keys:
"nuclei_type_map": Shape: (batch_size, H', W', num_nuclei)
"nuclei_binary_map": Shape: (batch_size, H', W', 2)
"hv_map": Shape: (batch_size, H', W', 2)
"instance_map": Shape: (batch_size, H', W')
ground_truth (dict): Ground truth values. Keys:
"nuclei_type_map": Shape: (batch_size, H', W', num_nuclei)
"nuclei_binary_map": Shape: (batch_size, H', W', 2)
"hv_map": Shape: (batch_size, H', W', 2)
"instance_map": Shape: (batch_size, H', W')
img_names (List): Names of images as list
num_nuclei_classes (int): Number of total nuclei classes including background
outdir (Union[Path, str]): Output directory where images should be stored
scores (List[List[float]], optional): List with scores for each image.
Each list entry is a list with 3 scores: Dice, Jaccard and bPQ for the image.
Defaults to None.
"""
outdir = Path(outdir)
outdir.mkdir(exist_ok=True, parents=True)
# permute for gt and predictions
predictions.hv_map = predictions.hv_map.permute(0, 2, 3, 1)
predictions.nuclei_binary_map = predictions.nuclei_binary_map.permute(0, 2, 3, 1)
predictions.nuclei_type_map = predictions.nuclei_type_map.permute(0, 2, 3, 1)
h = predictions.hv_map.shape[1]
w = predictions.hv_map.shape[2]
# convert to rgb and crop to selection
sample_images = (
imgs.permute(0, 2, 3, 1).contiguous().cpu().numpy()
) # convert to rgb
sample_images = cropping_center(sample_images, (h, w), True)
pred_sample_binary_map = (
predictions.nuclei_binary_map[:, :, :, 1].detach().cpu().numpy()
)
pred_sample_hv_map = predictions.hv_map.detach().cpu().numpy()
pred_sample_instance_maps = predictions.instance_map.detach().cpu().numpy()
pred_sample_type_maps = (
torch.argmax(predictions.nuclei_type_map, dim=-1).detach().cpu().numpy()
)
# create colormaps
hv_cmap = plt.get_cmap("jet")
binary_cmap = plt.get_cmap("jet")
instance_map = plt.get_cmap("viridis")
cell_colors = ["#ffffff", "#ff0000", "#00ff00", "#1e00ff", "#feff00", "#ffbf00"]
# invert the normalization of the sample images
transform_settings = self.run_conf["transformations"]
if "normalize" in transform_settings:
mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
else:
mean = (0.5, 0.5, 0.5)
std = (0.5, 0.5, 0.5)
inv_normalize = transforms.Normalize(
mean=[-0.5 / mean[0], -0.5 / mean[1], -0.5 / mean[2]],
std=[1 / std[0], 1 / std[1], 1 / std[2]],
)
inv_samples = inv_normalize(torch.tensor(sample_images).permute(0, 3, 1, 2))
sample_images = inv_samples.permute(0, 2, 3, 1).detach().cpu().numpy()
for i in range(len(imgs)):
fig, axs = plt.subplots(figsize=(6, 2), dpi=300)
placeholder = np.zeros((h, 7 * w, 3))
# orig image
placeholder[:h, :w, :3] = sample_images[i]
# binary prediction
placeholder[: h, w : 2 * w, :3] = rgba2rgb(
binary_cmap(pred_sample_binary_map[i])
) # *255?
# hv maps
placeholder[: h, 2 * w : 3 * w, :3] = rgba2rgb(
hv_cmap((pred_sample_hv_map[i, :, :, 0] + 1) / 2)
)
placeholder[: h, 3 * w : 4 * w, :3] = rgba2rgb(
hv_cmap((pred_sample_hv_map[i, :, :, 1] + 1) / 2)
)
# instance_predictions
placeholder[: h, 4 * w : 5 * w, :3] = rgba2rgb(
instance_map(
(
pred_sample_instance_maps[i]
- np.min(pred_sample_instance_maps[i])
)
/ (
np.max(pred_sample_instance_maps[i])
- np.min(pred_sample_instance_maps[i] + 1e-10)
)
)
)
# type_predictions
placeholder[: h, 5 * w : 6 * w, :3] = rgba2rgb(
binary_cmap(pred_sample_type_maps[i] / num_nuclei_classes)
)
# contours
# pred
pred_contours_polygon = [
v["contour"] for v in predictions.instance_types[i].values()
]
pred_contours_polygon = [
list(zip(poly[:, 0], poly[:, 1])) for poly in pred_contours_polygon
]
pred_contour_colors_polygon = [
cell_colors[v["type"]]
for v in predictions.instance_types[i].values()
]
pred_cell_image = Image.fromarray(
(sample_images[i] * 255).astype(np.uint8)
).convert("RGB")
pred_drawing = ImageDraw.Draw(pred_cell_image)
add_patch = lambda poly, color: pred_drawing.polygon(
poly, outline=color, width=2
)
[
add_patch(poly, c)
for poly, c in zip(pred_contours_polygon, pred_contour_colors_polygon)
]
pred_cell_image.save("raw_pred.png")
placeholder[: h, 6 * w : 7 * w, :3] = (
np.asarray(pred_cell_image) / 255
)
# plotting
axs.imshow(placeholder)
axs.set_xticks(np.arange(w / 2, 7 * w, w))
axs.set_xticklabels(
[
"Image",
"Binary-Cells",
"HV-Map-0",
"HV-Map-1",
"Instances",
"Nuclei-Pred",
"Countours",
],
fontsize=6,
)
axs.xaxis.tick_top()
axs.set_yticks([ h /2 ])
axs.set_yticklabels(["Pred."], fontsize=6)
axs.tick_params(axis="both", which="both", length=0)
grid_x = np.arange(w, 6 * w, w)
grid_y = np.arange(h, 2 * h, h)
for x_seg in grid_x:
axs.axvline(x_seg, color="black")
for y_seg in grid_y:
axs.axhline(y_seg, color="black")
fig.suptitle(f"All Predictions for input image")
fig.tight_layout()
fig.savefig("pred_img.png")
plt.close()
# CLI
class InferenceCellViTParser:
def __init__(self) -> None:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Perform CellViT inference for given run-directory with model checkpoints and logs",
)
parser.add_argument(
"--run_dir",
type=str,
help="Logging directory of a training run.",
default="./",
)
parser.add_argument(
"--checkpoint_name",
type=str,
help="Name of the checkpoint. Either select 'best_checkpoint.pth',"
"'latest_checkpoint.pth' or one of the intermediate checkpoint names,"
"e.g., 'checkpoint_100.pth'",
default="model_best.pth",
)
parser.add_argument(
"--gpu", type=int, help="Cuda-GPU ID for inference", default=0
)
parser.add_argument(
"--magnification",
type=int,
help="Dataset Magnification. Either 20 or 40. Default: 40",
choices=[20, 40],
default=40,
)
parser.add_argument(
"--plots",
action="store_true",
help="Generate inference plots in run_dir",
default=True,
)
self.parser = parser
def parse_arguments(self) -> dict:
opt = self.parser.parse_args()
return vars(opt)
if __name__ == "__main__":
configuration_parser = InferenceCellViTParser()
configuration = configuration_parser.parse_arguments()
print(configuration)
inf = InferenceCellViT(
run_dir=configuration["run_dir"],
checkpoint_name=configuration["checkpoint_name"],
gpu=configuration["gpu"],
magnification=configuration["magnification"],
)
model, dataloader, conf = inf.setup_patch_inference()
inf.run_patch_inference(
model, dataloader, conf, generate_plots=configuration["plots"]
)
|