Spaces:
Running
Running
File size: 21,196 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
# -*- coding: utf-8 -*-
# PanNuke Dataset
#
# Dataset information: https://arxiv.org/abs/2003.10778
# Please Prepare Dataset as described here: docs/readmes/pannuke.md
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import logging
import sys # remove
from pathlib import Path
from typing import Callable, Tuple, Union, List
sys.path.append("/homes/fhoerst/histo-projects/CellViT/") # remove
import numpy as np
import pandas as pd
import torch
import yaml
from numba import njit
from PIL import Image
from scipy.ndimage import center_of_mass, distance_transform_edt
from cell_segmentation.datasets.base_cell import CellDataset
from cell_segmentation.utils.tools import fix_duplicates, get_bounding_box
logger = logging.getLogger()
logger.addHandler(logging.NullHandler())
from natsort import natsorted
class PanNukeDataset(CellDataset):
"""PanNuke dataset
Args:
dataset_path (Union[Path, str]): Path to PanNuke dataset. Structure is described under ./docs/readmes/cell_segmentation.md
folds (Union[int, list[int]]): Folds to use for this dataset
transforms (Callable, optional): PyTorch transformations. Defaults to None.
stardist (bool, optional): Return StarDist labels. Defaults to False
regression (bool, optional): Return Regression of cells in x and y direction. Defaults to False
cache_dataset: If the dataset should be loaded to host memory in first epoch.
Be careful, workers in DataLoader needs to be persistent to have speedup.
Recommended to false, just use if you have enough RAM and your I/O operations might be limited.
Defaults to False.
"""
def __init__(
self,
dataset_path: Union[Path, str],
folds: Union[int, List[int]],
transforms: Callable = None,
stardist: bool = False,
regression: bool = False,
cache_dataset: bool = False,
) -> None:
if isinstance(folds, int):
folds = [folds]
self.dataset = Path(dataset_path).resolve()
self.transforms = transforms
self.images = []
self.masks = []
self.types = {}
self.img_names = []
self.folds = folds
self.cache_dataset = cache_dataset
self.stardist = stardist
self.regression = regression
for fold in folds:
image_path = self.dataset / f"fold{fold}" / "images"
fold_images = [
f for f in natsorted(image_path.glob("*.png")) if f.is_file()
]
# sanity_check: mask must exist for image
for fold_image in fold_images:
mask_path = (
self.dataset / f"fold{fold}" / "labels" / f"{fold_image.stem}.npy"
)
if mask_path.is_file():
self.images.append(fold_image)
self.masks.append(mask_path)
self.img_names.append(fold_image.name)
else:
logger.debug(
"Found image {fold_image}, but no corresponding annotation file!"
)
fold_types = pd.read_csv(self.dataset / f"fold{fold}" / "types.csv")
fold_type_dict = fold_types.set_index("img")["type"].to_dict()
self.types = {
**self.types,
**fold_type_dict,
} # careful - should all be named differently
logger.info(f"Created Pannuke Dataset by using fold(s) {self.folds}")
logger.info(f"Resulting dataset length: {self.__len__()}")
if self.cache_dataset:
self.cached_idx = [] # list of idx that should be cached
self.cached_imgs = {} # keys: idx, values: numpy array of imgs
self.cached_masks = {} # keys: idx, values: numpy array of masks
logger.info("Using cached dataset. Cache is built up during first epoch.")
def __getitem__(self, index: int) -> Tuple[torch.Tensor, dict, str, str]:
"""Get one dataset item consisting of transformed image,
masks (instance_map, nuclei_type_map, nuclei_binary_map, hv_map) and tissue type as string
Args:
index (int): Index of element to retrieve
Returns:
Tuple[torch.Tensor, dict, str, str]:
torch.Tensor: Image, with shape (3, H, W), in this case (3, 256, 256)
dict:
"instance_map": Instance-Map, each instance is has one integer starting by 1 (zero is background), Shape (256, 256)
"nuclei_type_map": Nuclei-Type-Map, for each nucleus (instance) the class is indicated by an integer. Shape (256, 256)
"nuclei_binary_map": Binary Nuclei-Mask, Shape (256, 256)
"hv_map": Horizontal and vertical instance map.
Shape: (2 , H, W). First dimension is horizontal (horizontal gradient (-1 to 1)),
last is vertical (vertical gradient (-1 to 1)) Shape (2, 256, 256)
[Optional if stardist]
"dist_map": Probability distance map. Shape (256, 256)
"stardist_map": Stardist vector map. Shape (n_rays, 256, 256)
[Optional if regression]
"regression_map": Regression map. Shape (2, 256, 256). First is vertical, second horizontal.
str: Tissue type
str: Image Name
"""
img_path = self.images[index]
if self.cache_dataset:
if index in self.cached_idx:
img = self.cached_imgs[index]
mask = self.cached_masks[index]
else:
# cache file
img = self.load_imgfile(index)
mask = self.load_maskfile(index)
self.cached_imgs[index] = img
self.cached_masks[index] = mask
self.cached_idx.append(index)
else:
img = self.load_imgfile(index)
mask = self.load_maskfile(index)
if self.transforms is not None:
transformed = self.transforms(image=img, mask=mask)
img = transformed["image"]
mask = transformed["mask"]
tissue_type = self.types[img_path.name]
inst_map = mask[:, :, 0].copy()
type_map = mask[:, :, 1].copy()
np_map = mask[:, :, 0].copy()
np_map[np_map > 0] = 1
hv_map = PanNukeDataset.gen_instance_hv_map(inst_map)
# torch convert
img = torch.Tensor(img).type(torch.float32)
img = img.permute(2, 0, 1)
if torch.max(img) >= 5:
img = img / 255
masks = {
"instance_map": torch.Tensor(inst_map).type(torch.int64),
"nuclei_type_map": torch.Tensor(type_map).type(torch.int64),
"nuclei_binary_map": torch.Tensor(np_map).type(torch.int64),
"hv_map": torch.Tensor(hv_map).type(torch.float32),
}
# load stardist transforms if neccessary
if self.stardist:
dist_map = PanNukeDataset.gen_distance_prob_maps(inst_map)
stardist_map = PanNukeDataset.gen_stardist_maps(inst_map)
masks["dist_map"] = torch.Tensor(dist_map).type(torch.float32)
masks["stardist_map"] = torch.Tensor(stardist_map).type(torch.float32)
if self.regression:
masks["regression_map"] = PanNukeDataset.gen_regression_map(inst_map)
return img, masks, tissue_type, Path(img_path).name
def __len__(self) -> int:
"""Length of Dataset
Returns:
int: Length of Dataset
"""
return len(self.images)
def set_transforms(self, transforms: Callable) -> None:
"""Set the transformations, can be used tp exchange transformations
Args:
transforms (Callable): PyTorch transformations
"""
self.transforms = transforms
def load_imgfile(self, index: int) -> np.ndarray:
"""Load image from file (disk)
Args:
index (int): Index of file
Returns:
np.ndarray: Image as array with shape (H, W, 3)
"""
img_path = self.images[index]
return np.array(Image.open(img_path)).astype(np.uint8)
def load_maskfile(self, index: int) -> np.ndarray:
"""Load mask from file (disk)
Args:
index (int): Index of file
Returns:
np.ndarray: Mask as array with shape (H, W, 2)
"""
mask_path = self.masks[index]
mask = np.load(mask_path, allow_pickle=True)
inst_map = mask[()]["inst_map"].astype(np.int32)
type_map = mask[()]["type_map"].astype(np.int32)
mask = np.stack([inst_map, type_map], axis=-1)
return mask
def load_cell_count(self):
"""Load Cell count from cell_count.csv file. File must be located inside the fold folder
and named "cell_count.csv"
Example file beginning:
Image,Neoplastic,Inflammatory,Connective,Dead,Epithelial
0_0.png,4,2,2,0,0
0_1.png,8,1,1,0,0
0_10.png,17,0,1,0,0
0_100.png,10,0,11,0,0
...
"""
df_placeholder = []
for fold in self.folds:
csv_path = self.dataset / f"fold{fold}" / "cell_count.csv"
cell_count = pd.read_csv(csv_path, index_col=0)
df_placeholder.append(cell_count)
self.cell_count = pd.concat(df_placeholder)
self.cell_count = self.cell_count.reindex(self.img_names)
def get_sampling_weights_tissue(self, gamma: float = 1) -> torch.Tensor:
"""Get sampling weights calculated by tissue type statistics
For this, a file named "weight_config.yaml" with the content:
tissue:
tissue_1: xxx
tissue_2: xxx (name of tissue: count)
...
Must exists in the dataset main folder (parent path, not inside the folds)
Args:
gamma (float, optional): Gamma scaling factor, between 0 and 1.
1 means total balancing, 0 means original weights. Defaults to 1.
Returns:
torch.Tensor: Weights for each sample
"""
assert 0 <= gamma <= 1, "Gamma must be between 0 and 1"
with open(
(self.dataset / "weight_config.yaml").resolve(), "r"
) as run_config_file:
yaml_config = yaml.safe_load(run_config_file)
tissue_counts = dict(yaml_config)["tissue"]
# calculate weight for each tissue
weights_dict = {}
k = np.sum(list(tissue_counts.values()))
for tissue, count in tissue_counts.items():
w = k / (gamma * count + (1 - gamma) * k)
weights_dict[tissue] = w
weights = []
for idx in range(self.__len__()):
img_idx = self.img_names[idx]
type_str = self.types[img_idx]
weights.append(weights_dict[type_str])
return torch.Tensor(weights)
def get_sampling_weights_cell(self, gamma: float = 1) -> torch.Tensor:
"""Get sampling weights calculated by cell type statistics
Args:
gamma (float, optional): Gamma scaling factor, between 0 and 1.
1 means total balancing, 0 means original weights. Defaults to 1.
Returns:
torch.Tensor: Weights for each sample
"""
assert 0 <= gamma <= 1, "Gamma must be between 0 and 1"
assert hasattr(self, "cell_count"), "Please run .load_cell_count() in advance!"
binary_weight_factors = np.array([4191, 4132, 6140, 232, 1528])
k = np.sum(binary_weight_factors)
cell_counts_imgs = np.clip(self.cell_count.to_numpy(), 0, 1)
weight_vector = k / (gamma * binary_weight_factors + (1 - gamma) * k)
img_weight = (1 - gamma) * np.max(cell_counts_imgs, axis=-1) + gamma * np.sum(
cell_counts_imgs * weight_vector, axis=-1
)
img_weight[np.where(img_weight == 0)] = np.min(
img_weight[np.nonzero(img_weight)]
)
return torch.Tensor(img_weight)
def get_sampling_weights_cell_tissue(self, gamma: float = 1) -> torch.Tensor:
"""Get combined sampling weights by calculating tissue and cell sampling weights,
normalizing them and adding them up to yield one score.
Args:
gamma (float, optional): Gamma scaling factor, between 0 and 1.
1 means total balancing, 0 means original weights. Defaults to 1.
Returns:
torch.Tensor: Weights for each sample
"""
assert 0 <= gamma <= 1, "Gamma must be between 0 and 1"
tw = self.get_sampling_weights_tissue(gamma)
cw = self.get_sampling_weights_cell(gamma)
weights = tw / torch.max(tw) + cw / torch.max(cw)
return weights
@staticmethod
def gen_instance_hv_map(inst_map: np.ndarray) -> np.ndarray:
"""Obtain the horizontal and vertical distance maps for each
nuclear instance.
Args:
inst_map (np.ndarray): Instance map with each instance labelled as a unique integer
Shape: (H, W)
Returns:
np.ndarray: Horizontal and vertical instance map.
Shape: (2, H, W). First dimension is horizontal (horizontal gradient (-1 to 1)),
last is vertical (vertical gradient (-1 to 1))
"""
orig_inst_map = inst_map.copy() # instance ID map
x_map = np.zeros(orig_inst_map.shape[:2], dtype=np.float32)
y_map = np.zeros(orig_inst_map.shape[:2], dtype=np.float32)
inst_list = list(np.unique(orig_inst_map))
inst_list.remove(0) # 0 is background
for inst_id in inst_list:
inst_map = np.array(orig_inst_map == inst_id, np.uint8)
inst_box = get_bounding_box(inst_map)
# expand the box by 2px
# Because we first pad the ann at line 207, the bboxes
# will remain valid after expansion
if inst_box[0] >= 2:
inst_box[0] -= 2
if inst_box[2] >= 2:
inst_box[2] -= 2
if inst_box[1] <= orig_inst_map.shape[0] - 2:
inst_box[1] += 2
if inst_box[3] <= orig_inst_map.shape[0] - 2:
inst_box[3] += 2
# improvement
inst_map = inst_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
if inst_map.shape[0] < 2 or inst_map.shape[1] < 2:
continue
# instance center of mass, rounded to nearest pixel
inst_com = list(center_of_mass(inst_map))
inst_com[0] = int(inst_com[0] + 0.5)
inst_com[1] = int(inst_com[1] + 0.5)
inst_x_range = np.arange(1, inst_map.shape[1] + 1)
inst_y_range = np.arange(1, inst_map.shape[0] + 1)
# shifting center of pixels grid to instance center of mass
inst_x_range -= inst_com[1]
inst_y_range -= inst_com[0]
inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range)
# remove coord outside of instance
inst_x[inst_map == 0] = 0
inst_y[inst_map == 0] = 0
inst_x = inst_x.astype("float32")
inst_y = inst_y.astype("float32")
# normalize min into -1 scale
if np.min(inst_x) < 0:
inst_x[inst_x < 0] /= -np.amin(inst_x[inst_x < 0])
if np.min(inst_y) < 0:
inst_y[inst_y < 0] /= -np.amin(inst_y[inst_y < 0])
# normalize max into +1 scale
if np.max(inst_x) > 0:
inst_x[inst_x > 0] /= np.amax(inst_x[inst_x > 0])
if np.max(inst_y) > 0:
inst_y[inst_y > 0] /= np.amax(inst_y[inst_y > 0])
####
x_map_box = x_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
x_map_box[inst_map > 0] = inst_x[inst_map > 0]
y_map_box = y_map[inst_box[0] : inst_box[1], inst_box[2] : inst_box[3]]
y_map_box[inst_map > 0] = inst_y[inst_map > 0]
hv_map = np.stack([x_map, y_map])
return hv_map
@staticmethod
def gen_distance_prob_maps(inst_map: np.ndarray) -> np.ndarray:
"""Generate distance probability maps
Args:
inst_map (np.ndarray): Instance-Map, each instance is has one integer starting by 1 (zero is background), Shape (H, W)
Returns:
np.ndarray: Distance probability map, shape (H, W)
"""
inst_map = fix_duplicates(inst_map)
dist = np.zeros_like(inst_map, dtype=np.float64)
inst_list = list(np.unique(inst_map))
if 0 in inst_list:
inst_list.remove(0)
for inst_id in inst_list:
inst = np.array(inst_map == inst_id, np.uint8)
y1, y2, x1, x2 = get_bounding_box(inst)
y1 = y1 - 2 if y1 - 2 >= 0 else y1
x1 = x1 - 2 if x1 - 2 >= 0 else x1
x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2
y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2
inst = inst[y1:y2, x1:x2]
if inst.shape[0] < 2 or inst.shape[1] < 2:
continue
# chessboard distance map generation
# normalize distance to 0-1
inst_dist = distance_transform_edt(inst)
inst_dist = inst_dist.astype("float64")
max_value = np.amax(inst_dist)
if max_value <= 0:
continue
inst_dist = inst_dist / (np.max(inst_dist) + 1e-10)
dist_map_box = dist[y1:y2, x1:x2]
dist_map_box[inst > 0] = inst_dist[inst > 0]
return dist
@staticmethod
@njit
def gen_stardist_maps(inst_map: np.ndarray) -> np.ndarray:
"""Generate StarDist map with 32 nrays
Args:
inst_map (np.ndarray): Instance-Map, each instance is has one integer starting by 1 (zero is background), Shape (H, W)
Returns:
np.ndarray: Stardist vector map, shape (n_rays, H, W)
"""
n_rays = 32
# inst_map = fix_duplicates(inst_map)
dist = np.empty(inst_map.shape + (n_rays,), np.float32)
st_rays = np.float32((2 * np.pi) / n_rays)
for i in range(inst_map.shape[0]):
for j in range(inst_map.shape[1]):
value = inst_map[i, j]
if value == 0:
dist[i, j] = 0
else:
for k in range(n_rays):
phi = np.float32(k * st_rays)
dy = np.cos(phi)
dx = np.sin(phi)
x, y = np.float32(0), np.float32(0)
while True:
x += dx
y += dy
ii = int(round(i + x))
jj = int(round(j + y))
if (
ii < 0
or ii >= inst_map.shape[0]
or jj < 0
or jj >= inst_map.shape[1]
or value != inst_map[ii, jj]
):
# small correction as we overshoot the boundary
t_corr = 1 - 0.5 / max(np.abs(dx), np.abs(dy))
x -= t_corr * dx
y -= t_corr * dy
dst = np.sqrt(x**2 + y**2)
dist[i, j, k] = dst
break
return dist.transpose(2, 0, 1)
@staticmethod
def gen_regression_map(inst_map: np.ndarray):
n_directions = 2
dist = np.zeros(inst_map.shape + (n_directions,), np.float32).transpose(2, 0, 1)
inst_map = fix_duplicates(inst_map)
inst_list = list(np.unique(inst_map))
if 0 in inst_list:
inst_list.remove(0)
for inst_id in inst_list:
inst = np.array(inst_map == inst_id, np.uint8)
y1, y2, x1, x2 = get_bounding_box(inst)
y1 = y1 - 2 if y1 - 2 >= 0 else y1
x1 = x1 - 2 if x1 - 2 >= 0 else x1
x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2
y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2
inst = inst[y1:y2, x1:x2]
y_mass, x_mass = center_of_mass(inst)
x_map = np.repeat(np.arange(1, x2 - x1 + 1)[None, :], y2 - y1, axis=0)
y_map = np.repeat(np.arange(1, y2 - y1 + 1)[:, None], x2 - x1, axis=1)
# we use a transposed coordinate system to align to HV-map, correct would be -1*x_dist_map and -1*y_dist_map
x_dist_map = (x_map - x_mass) * np.clip(inst, 0, 1)
y_dist_map = (y_map - y_mass) * np.clip(inst, 0, 1)
dist[0, y1:y2, x1:x2] = x_dist_map
dist[1, y1:y2, x1:x2] = y_dist_map
return dist
|