Spaces:
Running
Running
File size: 9,954 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# -*- coding: utf-8 -*-
# PanNuke Dataset
#
# Dataset information: https://arxiv.org/abs/2108.11195
# Please Prepare Dataset as described here: docs/readmes/pannuke.md # TODO: write own documentation
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import logging
from pathlib import Path
from typing import Callable, Tuple, Union, List
import numpy as np
import pandas as pd
import torch
from PIL import Image
from cell_segmentation.datasets.base_cell import CellDataset
from cell_segmentation.datasets.pannuke import PanNukeDataset
logger = logging.getLogger()
logger.addHandler(logging.NullHandler())
class CoNicDataset(CellDataset):
"""Lizzard dataset
This dataset is always cached
Args:
dataset_path (Union[Path, str]): Path to Lizzard dataset. Structure is described under ./docs/readmes/cell_segmentation.md
folds (Union[int, list[int]]): Folds to use for this dataset
transforms (Callable, optional): PyTorch transformations. Defaults to None.
stardist (bool, optional): Return StarDist labels. Defaults to False
regression (bool, optional): Return Regression of cells in x and y direction. Defaults to False
**kwargs are irgnored
"""
def __init__(
self,
dataset_path: Union[Path, str],
folds: Union[int, List[int]],
transforms: Callable = None,
stardist: bool = False,
regression: bool = False,
**kwargs,
) -> None:
if isinstance(folds, int):
folds = [folds]
self.dataset = Path(dataset_path).resolve()
self.transforms = transforms
self.images = []
self.masks = []
self.img_names = []
self.folds = folds
self.stardist = stardist
self.regression = regression
for fold in folds:
image_path = self.dataset / f"fold{fold}" / "images"
fold_images = [f for f in sorted(image_path.glob("*.png")) if f.is_file()]
# sanity_check: mask must exist for image
for fold_image in fold_images:
mask_path = (
self.dataset / f"fold{fold}" / "labels" / f"{fold_image.stem}.npy"
)
if mask_path.is_file():
self.images.append(fold_image)
self.masks.append(mask_path)
self.img_names.append(fold_image.name)
else:
logger.debug(
"Found image {fold_image}, but no corresponding annotation file!"
)
# load everything in advance to speedup, as the dataset is rather small
self.loaded_imgs = []
self.loaded_masks = []
for idx in range(len(self.images)):
img_path = self.images[idx]
img = np.array(Image.open(img_path)).astype(np.uint8)
mask_path = self.masks[idx]
mask = np.load(mask_path, allow_pickle=True)
inst_map = mask[()]["inst_map"].astype(np.int32)
type_map = mask[()]["type_map"].astype(np.int32)
mask = np.stack([inst_map, type_map], axis=-1)
self.loaded_imgs.append(img)
self.loaded_masks.append(mask)
logger.info(f"Created Pannuke Dataset by using fold(s) {self.folds}")
logger.info(f"Resulting dataset length: {self.__len__()}")
def __getitem__(self, index: int) -> Tuple[torch.Tensor, dict, str, str]:
"""Get one dataset item consisting of transformed image,
masks (instance_map, nuclei_type_map, nuclei_binary_map, hv_map) and tissue type as string
Args:
index (int): Index of element to retrieve
Returns:
Tuple[torch.Tensor, dict, str, str]:
torch.Tensor: Image, with shape (3, H, W), shape is arbitrary for Lizzard (H and W approx. between 500 and 2000)
dict:
"instance_map": Instance-Map, each instance is has one integer starting by 1 (zero is background), Shape (256, 256)
"nuclei_type_map": Nuclei-Type-Map, for each nucleus (instance) the class is indicated by an integer. Shape (256, 256)
"nuclei_binary_map": Binary Nuclei-Mask, Shape (256, 256)
"hv_map": Horizontal and vertical instance map.
Shape: (H, W, 2). First dimension is horizontal (horizontal gradient (-1 to 1)),
last is vertical (vertical gradient (-1 to 1)) Shape (256, 256, 2)
"dist_map": Probability distance map. Shape (256, 256)
"stardist_map": Stardist vector map. Shape (n_rays, 256, 256)
[Optional if regression]
"regression_map": Regression map. Shape (2, 256, 256). First is vertical, second horizontal.
str: Tissue type
str: Image Name
"""
img_path = self.images[index]
img = self.loaded_imgs[index]
mask = self.loaded_masks[index]
if self.transforms is not None:
transformed = self.transforms(image=img, mask=mask)
img = transformed["image"]
mask = transformed["mask"]
inst_map = mask[:, :, 0].copy()
type_map = mask[:, :, 1].copy()
np_map = mask[:, :, 0].copy()
np_map[np_map > 0] = 1
hv_map = PanNukeDataset.gen_instance_hv_map(inst_map)
# torch convert
img = torch.Tensor(img).type(torch.float32)
img = img.permute(2, 0, 1)
if torch.max(img) >= 5:
img = img / 255
masks = {
"instance_map": torch.Tensor(inst_map).type(torch.int64),
"nuclei_type_map": torch.Tensor(type_map).type(torch.int64),
"nuclei_binary_map": torch.Tensor(np_map).type(torch.int64),
"hv_map": torch.Tensor(hv_map).type(torch.float32),
}
if self.stardist:
dist_map = PanNukeDataset.gen_distance_prob_maps(inst_map)
stardist_map = PanNukeDataset.gen_stardist_maps(inst_map)
masks["dist_map"] = torch.Tensor(dist_map).type(torch.float32)
masks["stardist_map"] = torch.Tensor(stardist_map).type(torch.float32)
if self.regression:
masks["regression_map"] = PanNukeDataset.gen_regression_map(inst_map)
return img, masks, "Colon", Path(img_path).name
def __len__(self) -> int:
"""Length of Dataset
Returns:
int: Length of Dataset
"""
return len(self.images)
def set_transforms(self, transforms: Callable) -> None:
"""Set the transformations, can be used tp exchange transformations
Args:
transforms (Callable): PyTorch transformations
"""
self.transforms = transforms
def load_cell_count(self):
"""Load Cell count from cell_count.csv file. File must be located inside the fold folder
and named "cell_count.csv"
Example file beginning:
Image,Neutrophil,Epithelial,Lymphocyte,Plasma,Eosinophil,Connective
consep_1_0000.png,0,117,0,0,0,0
consep_1_0001.png,0,95,1,0,0,8
consep_1_0002.png,0,172,3,0,0,2
...
"""
df_placeholder = []
for fold in self.folds:
csv_path = self.dataset / f"fold{fold}" / "cell_count.csv"
cell_count = pd.read_csv(csv_path, index_col=0)
df_placeholder.append(cell_count)
self.cell_count = pd.concat(df_placeholder)
self.cell_count = self.cell_count.reindex(self.img_names)
def get_sampling_weights_cell(self, gamma: float = 1) -> torch.Tensor:
"""Get sampling weights calculated by cell type statistics
Args:
gamma (float, optional): Gamma scaling factor, between 0 and 1.
1 means total balancing, 0 means original weights. Defaults to 1.
Returns:
torch.Tensor: Weights for each sample
"""
assert 0 <= gamma <= 1, "Gamma must be between 0 and 1"
assert hasattr(self, "cell_count"), "Please run .load_cell_count() in advance!"
binary_weight_factors = np.array([1069, 4189, 4356, 3103, 1025, 4527])
k = np.sum(binary_weight_factors)
cell_counts_imgs = np.clip(self.cell_count.to_numpy(), 0, 1)
weight_vector = k / (gamma * binary_weight_factors + (1 - gamma) * k)
img_weight = (1 - gamma) * np.max(cell_counts_imgs, axis=-1) + gamma * np.sum(
cell_counts_imgs * weight_vector, axis=-1
)
img_weight[np.where(img_weight == 0)] = np.min(
img_weight[np.nonzero(img_weight)]
)
return torch.Tensor(img_weight)
# def get_sampling_weights_cell(self, gamma: float = 1) -> torch.Tensor:
# """Get sampling weights calculated by cell type statistics
# Args:
# gamma (float, optional): Gamma scaling factor, between 0 and 1.
# 1 means total balancing, 0 means original weights. Defaults to 1.
# Returns:
# torch.Tensor: Weights for each sample
# """
# assert 0 <= gamma <= 1, "Gamma must be between 0 and 1"
# assert hasattr(self, "cell_count"), "Please run .load_cell_count() in advance!"
# binary_weight_factors = np.array([4012, 222017, 93612, 24793, 2999, 98783])
# k = np.sum(binary_weight_factors)
# cell_counts_imgs = self.cell_count.to_numpy()
# weight_vector = k / (gamma * binary_weight_factors + (1 - gamma) * k)
# img_weight = (1 - gamma) * np.max(cell_counts_imgs, axis=-1) + gamma * np.sum(
# cell_counts_imgs * weight_vector, axis=-1
# )
# img_weight[np.where(img_weight == 0)] = np.min(
# img_weight[np.nonzero(img_weight)]
# )
# return torch.Tensor(img_weight)
|