Spaces:
Running
Running
File size: 17,994 Bytes
aea73e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs (https://arxiv.org/abs/2203.06717)
# Github source: https://github.com/DingXiaoH/RepLKNet-pytorch
# Licensed under The MIT License [see LICENSE for details]
# Based on ConvNeXt, timm, DINO and DeiT code bases
# https://github.com/facebookresearch/ConvNeXt
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath
import sys
import os
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias):
if type(kernel_size) is int:
use_large_impl = kernel_size > 5
else:
assert len(kernel_size) == 2 and kernel_size[0] == kernel_size[1]
use_large_impl = kernel_size[0] > 5
has_large_impl = 'LARGE_KERNEL_CONV_IMPL' in os.environ
if has_large_impl and in_channels == out_channels and out_channels == groups and use_large_impl and stride == 1 and padding == kernel_size // 2 and dilation == 1:
sys.path.append(os.environ['LARGE_KERNEL_CONV_IMPL'])
# Please follow the instructions https://github.com/DingXiaoH/RepLKNet-pytorch/blob/main/README.md
# export LARGE_KERNEL_CONV_IMPL=absolute_path_to_where_you_cloned_the_example (i.e., depthwise_conv2d_implicit_gemm.py)
# TODO more efficient PyTorch implementations of large-kernel convolutions. Pull requests are welcomed.
# Or you may try MegEngine. We have integrated an efficient implementation into MegEngine and it will automatically use it.
from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
else:
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
use_sync_bn = False
def enable_sync_bn():
global use_sync_bn
use_sync_bn = True
def get_bn(channels):
if use_sync_bn:
return nn.SyncBatchNorm(channels)
else:
return nn.BatchNorm2d(channels)
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1):
if padding is None:
padding = kernel_size // 2
result = nn.Sequential()
result.add_module('conv', get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False))
result.add_module('bn', get_bn(out_channels))
return result
def conv_bn_relu(in_channels, out_channels, kernel_size, stride, padding, groups, dilation=1):
if padding is None:
padding = kernel_size // 2
result = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=groups, dilation=dilation)
result.add_module('nonlinear', nn.ReLU())
return result
def fuse_bn(conv, bn):
kernel = conv.weight
running_mean = bn.running_mean
running_var = bn.running_var
gamma = bn.weight
beta = bn.bias
eps = bn.eps
std = (running_var + eps).sqrt()
t = (gamma / std).reshape(-1, 1, 1, 1)
return kernel * t, beta - running_mean * gamma / std
class ReparamLargeKernelConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size,
stride, groups,
small_kernel,
small_kernel_merged=False):
super(ReparamLargeKernelConv, self).__init__()
self.kernel_size = kernel_size
self.small_kernel = small_kernel
# We assume the conv does not change the feature map size, so padding = k//2. Otherwise, you may configure padding as you wish, and change the padding of small_conv accordingly.
padding = kernel_size // 2
if small_kernel_merged:
self.lkb_reparam = get_conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=1, groups=groups, bias=True)
else:
self.lkb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, dilation=1, groups=groups)
if small_kernel is not None:
assert small_kernel <= kernel_size, 'The kernel size for re-param cannot be larger than the large kernel!'
self.small_conv = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=small_kernel,
stride=stride, padding=small_kernel//2, groups=groups, dilation=1)
def forward(self, inputs):
if hasattr(self, 'lkb_reparam'):
out = self.lkb_reparam(inputs)
else:
out = self.lkb_origin(inputs)
if hasattr(self, 'small_conv'):
out += self.small_conv(inputs)
return out
def get_equivalent_kernel_bias(self):
eq_k, eq_b = fuse_bn(self.lkb_origin.conv, self.lkb_origin.bn)
if hasattr(self, 'small_conv'):
small_k, small_b = fuse_bn(self.small_conv.conv, self.small_conv.bn)
eq_b += small_b
# add to the central part
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b
def merge_kernel(self):
eq_k, eq_b = self.get_equivalent_kernel_bias()
self.lkb_reparam = get_conv2d(in_channels=self.lkb_origin.conv.in_channels,
out_channels=self.lkb_origin.conv.out_channels,
kernel_size=self.lkb_origin.conv.kernel_size, stride=self.lkb_origin.conv.stride,
padding=self.lkb_origin.conv.padding, dilation=self.lkb_origin.conv.dilation,
groups=self.lkb_origin.conv.groups, bias=True)
self.lkb_reparam.weight.data = eq_k
self.lkb_reparam.bias.data = eq_b
self.__delattr__('lkb_origin')
if hasattr(self, 'small_conv'):
self.__delattr__('small_conv')
class ConvFFN(nn.Module):
def __init__(self, in_channels, internal_channels, out_channels, drop_path):
super().__init__()
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.preffn_bn = get_bn(in_channels)
self.pw1 = conv_bn(in_channels=in_channels, out_channels=internal_channels, kernel_size=1, stride=1, padding=0, groups=1)
self.pw2 = conv_bn(in_channels=internal_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0, groups=1)
self.nonlinear = nn.GELU()
def forward(self, x):
out = self.preffn_bn(x)
out = self.pw1(out)
out = self.nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKBlock(nn.Module):
def __init__(self, in_channels, dw_channels, block_lk_size, small_kernel, drop_path, device="cpu", small_kernel_merged=False):
super().__init__()
self.pw1 = conv_bn_relu(in_channels, dw_channels, 1, 1, 0, groups=1).to(device)
self.pw2 = conv_bn(dw_channels, in_channels, 1, 1, 0, groups=1).to(device)
self.large_kernel = ReparamLargeKernelConv(in_channels=dw_channels, out_channels=dw_channels, kernel_size=block_lk_size,
stride=1, groups=dw_channels, small_kernel=small_kernel, small_kernel_merged=small_kernel_merged).to(device)
self.lk_nonlinear = nn.ReLU().to(device)
self.prelkb_bn = get_bn(in_channels).to(device)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
print('drop path:', self.drop_path)
def forward(self, x):
out = self.prelkb_bn(x)
out = self.pw1(out)
out = self.large_kernel(out)
out = self.lk_nonlinear(out)
out = self.pw2(out)
return x + self.drop_path(out)
class RepLKNetStage(nn.Module):
def __init__(self, channels, num_blocks, stage_lk_size, drop_path,
small_kernel, dw_ratio=1, ffn_ratio=4,
use_checkpoint=False, # train with torch.utils.checkpoint to save memory
small_kernel_merged=False,
norm_intermediate_features=False):
super().__init__()
self.use_checkpoint = use_checkpoint
blks = []
for i in range(num_blocks):
block_drop_path = drop_path[i] if isinstance(drop_path, list) else drop_path
# Assume all RepLK Blocks within a stage share the same lk_size. You may tune it on your own model.
replk_block = RepLKBlock(in_channels=channels, dw_channels=int(channels * dw_ratio), block_lk_size=stage_lk_size,
small_kernel=small_kernel, drop_path=block_drop_path, small_kernel_merged=small_kernel_merged)
convffn_block = ConvFFN(in_channels=channels, internal_channels=int(channels * ffn_ratio), out_channels=channels,
drop_path=block_drop_path)
blks.append(replk_block)
blks.append(convffn_block)
self.blocks = nn.ModuleList(blks)
if norm_intermediate_features:
self.norm = get_bn(channels) # Only use this with RepLKNet-XL on downstream tasks
else:
self.norm = nn.Identity()
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x) # Save training memory
else:
x = blk(x)
return x
class RepLKNet(nn.Module):
def __init__(self, large_kernel_sizes, layers, channels, drop_path_rate, small_kernel,
dw_ratio=1, ffn_ratio=4, in_channels=3, num_classes=1000, out_indices=None,
use_checkpoint=False,
small_kernel_merged=False,
use_sync_bn=True,
norm_intermediate_features=False # for RepLKNet-XL on COCO and ADE20K, use an extra BN to normalize the intermediate feature maps then feed them into the heads
):
super().__init__()
if num_classes is None and out_indices is None:
raise ValueError('must specify one of num_classes (for pretraining) and out_indices (for downstream tasks)')
elif num_classes is not None and out_indices is not None:
raise ValueError('cannot specify both num_classes (for pretraining) and out_indices (for downstream tasks)')
elif num_classes is not None and norm_intermediate_features:
raise ValueError('for pretraining, no need to normalize the intermediate feature maps')
self.out_indices = out_indices
if use_sync_bn:
enable_sync_bn()
base_width = channels[0]
self.use_checkpoint = use_checkpoint
self.norm_intermediate_features = norm_intermediate_features
self.num_stages = len(layers)
self.stem = nn.ModuleList([
conv_bn_relu(in_channels=in_channels, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=1),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=1, padding=1, groups=base_width),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=1, stride=1, padding=0, groups=1),
conv_bn_relu(in_channels=base_width, out_channels=base_width, kernel_size=3, stride=2, padding=1, groups=base_width)])
# stochastic depth. We set block-wise drop-path rate. The higher level blocks are more likely to be dropped. This implementation follows Swin.
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))]
self.stages = nn.ModuleList()
self.transitions = nn.ModuleList()
for stage_idx in range(self.num_stages):
layer = RepLKNetStage(channels=channels[stage_idx], num_blocks=layers[stage_idx],
stage_lk_size=large_kernel_sizes[stage_idx],
drop_path=dpr[sum(layers[:stage_idx]):sum(layers[:stage_idx + 1])],
small_kernel=small_kernel, dw_ratio=dw_ratio, ffn_ratio=ffn_ratio,
use_checkpoint=use_checkpoint, small_kernel_merged=small_kernel_merged,
norm_intermediate_features=norm_intermediate_features)
self.stages.append(layer)
if stage_idx < len(layers) - 1:
transition = nn.Sequential(
conv_bn_relu(channels[stage_idx], channels[stage_idx + 1], 1, 1, 0, groups=1),
conv_bn_relu(channels[stage_idx + 1], channels[stage_idx + 1], 3, stride=2, padding=1, groups=channels[stage_idx + 1]))
self.transitions.append(transition)
if num_classes is not None:
self.norm = get_bn(channels[-1])
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(channels[-1], num_classes)
def forward_features(self, x):
x = self.stem[0](x)
for stem_layer in self.stem[1:]:
if self.use_checkpoint:
x = checkpoint.checkpoint(stem_layer, x) # save memory
else:
x = stem_layer(x)
if self.out_indices is None:
# Just need the final output
for stage_idx in range(self.num_stages):
x = self.stages[stage_idx](x)
if stage_idx < self.num_stages - 1:
x = self.transitions[stage_idx](x)
return x
else:
# Need the intermediate feature maps
outs = []
for stage_idx in range(self.num_stages):
x = self.stages[stage_idx](x)
if stage_idx in self.out_indices:
outs.append(self.stages[stage_idx].norm(x)) # For RepLKNet-XL normalize the features before feeding them into the heads
if stage_idx < self.num_stages - 1:
x = self.transitions[stage_idx](x)
return outs
def forward(self, x):
x = self.forward_features(x)
if self.out_indices:
return x
else:
x = self.norm(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.head(x)
return x
def structural_reparam(self):
for m in self.modules():
if hasattr(m, 'merge_kernel'):
m.merge_kernel()
# If your framework cannot automatically fuse BN for inference, you may do it manually.
# The BNs after and before conv layers can be removed.
# No need to call this if your framework support automatic BN fusion.
def deep_fuse_BN(self):
for m in self.modules():
if not isinstance(m, nn.Sequential):
continue
if not len(m) in [2, 3]: # Only handle conv-BN or conv-BN-relu
continue
# If you use a custom Conv2d impl, assume it also has 'kernel_size' and 'weight'
if hasattr(m[0], 'kernel_size') and hasattr(m[0], 'weight') and isinstance(m[1], nn.BatchNorm2d):
conv = m[0]
bn = m[1]
fused_kernel, fused_bias = fuse_bn(conv, bn)
fused_conv = get_conv2d(conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size,
stride=conv.stride,
padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True)
fused_conv.weight.data = fused_kernel
fused_conv.bias.data = fused_bias
m[0] = fused_conv
m[1] = nn.Identity()
def create_RepLKNet31B(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[128,256,512,1024],
drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
def create_RepLKNet31L(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[31,29,27,13], layers=[2,2,18,2], channels=[192,384,768,1536],
drop_path_rate=drop_path_rate, small_kernel=5, num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
def create_RepLKNetXL(drop_path_rate=0.3, num_classes=1000, use_checkpoint=True, small_kernel_merged=False):
return RepLKNet(large_kernel_sizes=[27,27,27,13], layers=[2,2,18,2], channels=[256,512,1024,2048],
drop_path_rate=drop_path_rate, small_kernel=None, dw_ratio=1.5,
num_classes=num_classes, use_checkpoint=use_checkpoint,
small_kernel_merged=small_kernel_merged)
if __name__ == '__main__':
model = create_RepLKNet31B(small_kernel_merged=False)
model.eval()
print('------------------- training-time model -------------')
print(model)
x = torch.randn(2, 3, 224, 224)
origin_y = model(x)
model.structural_reparam()
print('------------------- after re-param -------------')
print(model)
reparam_y = model(x)
print('------------------- the difference is ------------------------')
print((origin_y - reparam_y).abs().sum())
|