File size: 39,093 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
# -*- coding: utf-8 -*-
# CellViT Inference Method for Patch-Wise Inference on MoNuSeg dataset
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen

import argparse
import inspect
import os
import sys

currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.insert(0, parentdir)

from base_ml.base_experiment import BaseExperiment

BaseExperiment.seed_run(1232)

from pathlib import Path
from typing import List, Union, Tuple

import albumentations as A
import cv2 as cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from einops import rearrange
from matplotlib import pyplot as plt
from PIL import Image, ImageDraw
from skimage.color import rgba2rgb
from torch.utils.data import DataLoader
from torchmetrics.functional import dice
from torchmetrics.functional.classification import binary_jaccard_index
from torchvision import transforms

from cell_segmentation.datasets.monuseg import MoNuSegDataset
from cell_segmentation.inference.cell_detection import (
    CellPostProcessor,
    get_cell_position,
    get_cell_position_marging,
    get_edge_patch,
)
from cell_segmentation.utils.metrics import (
    cell_detection_scores,
    get_fast_pq,
    remap_label,
)
from cell_segmentation.utils.post_proc_cellvit import calculate_instances
from cell_segmentation.utils.tools import pair_coordinates
from models.segmentation.cell_segmentation.cellvit import CellViT

from utils.logger import Logger
from utils.tools import unflatten_dict


class MoNuSegInference:
    def __init__(
        self,
        model_path: Union[Path, str],
        dataset_path: Union[Path, str],
        outdir: Union[Path, str],
        gpu: int,
        patching: bool = False,
        overlap: int = 0,
        magnification: int = 40,
    ) -> None:
        """Cell Segmentation Inference class for MoNuSeg dataset

        Args:
            model_path (Union[Path, str]): Path to model checkpoint
            dataset_path (Union[Path, str]): Path to dataset
            outdir (Union[Path, str]): Output directory
            gpu (int): CUDA GPU id to use
            patching (bool, optional): If dataset should be pacthed to 256px. Defaults to False.
            overlap (int, optional): If overlap should be used. Recommed (next to no overlap) is 64 px. Overlap in px.
                If overlap is used, patching must be True. Defaults to 0.
            magnification (int, optional): Dataset magnification. Defaults to 40.
        """
        self.model_path = Path(model_path)
        self.device = "cpu"
        self.magnification = magnification
        self.overlap = overlap
        self.patching = patching
        if overlap > 0:
            assert patching, "Patching must be activated"

        # self.__instantiate_logger()
        self.__load_model()
        self.__load_inference_transforms()
        self.__setup_amp()
        self.inference_dataset = MoNuSegDataset(
            dataset_path=dataset_path,
            transforms=self.inference_transforms,
            patching=patching,
            overlap=overlap,
        )
        self.inference_dataloader = DataLoader(
            self.inference_dataset,
            batch_size=1,
            num_workers=8,
            pin_memory=False,
            shuffle=False,
        )

    def __instantiate_logger(self) -> None:
        """Instantiate logger

        Logger is using no formatters. Logs are stored in the run directory under the filename: inference.log
        """
        logger = Logger(
            level="INFO",
            log_dir=self.outdir,
            comment="inference_monuseg",
            use_timestamp=False,
            formatter="%(message)s",
        )
        self.logger = logger.create_logger()

    def __load_model(self) -> None:
        """Load model and checkpoint and load the state_dict"""
        self.logger.info(f"Loading model: {self.model_path}")

        model_checkpoint = torch.load(self.model_path, map_location="cpu")

        # unpack checkpoint
        self.run_conf = unflatten_dict(model_checkpoint["config"], ".")
        self.model = self.__get_model(model_type=model_checkpoint["arch"])
        self.logger.info(
            self.model.load_state_dict(model_checkpoint["model_state_dict"])
        )
        self.model.eval()
        self.model.to(self.device)

    def __get_model(
        self, model_type: str
    ) -> Union[
        CellViT,
    ]:
        """Return the trained model for inference

        Args:
            model_type (str): Name of the model. Must either be one of:
                CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared

        Returns:
            Union[CellViT, CellViTShared, CellViT256, CellViTShared, CellViTSAM, CellViTSAMShared]: Model
        """
        implemented_models = [
            "CellViT",
        ]
        if model_type not in implemented_models:
            raise NotImplementedError(
                f"Unknown model type. Please select one of {implemented_models}"
            )
        
        if model_type in ["CellViT", "CellViTShared"]:
            if model_type == "CellViT":
                model_class = CellViT
            model = model_class(
                model256_path=self.run_conf["model"].get("pretrained_encoder"),
                num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
                num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
                #embed_dim=self.run_conf["model"]["embed_dim"],
                in_channels=self.run_conf["model"].get("input_channels", 3),
                #depth=self.run_conf["model"]["depth"],
                #num_heads=self.run_conf["model"]["num_heads"],
                #extract_layers=self.run_conf["model"]["extract_layers"],
                #regression_loss=self.run_conf["model"].get("regression_loss", False),
            )

        return model

    def __load_inference_transforms(self) -> None:
        """Load the inference transformations from the run_configuration"""
        self.logger.info("Loading inference transformations")

        transform_settings = self.run_conf["transformations"]
        if "normalize" in transform_settings:
            mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
            std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
        else:
            mean = (0.5, 0.5, 0.5)
            std = (0.5, 0.5, 0.5)
        self.inference_transforms = A.Compose([A.Normalize(mean=mean, std=std)])

    def __setup_amp(self) -> None:
        """Setup automated mixed precision (amp) for inference."""
        self.mixed_precision = self.run_conf["training"].get("mixed_precision", False)

    def run_inference(self, generate_plots: bool = False) -> None:
        """Run inference

        Args:
            generate_plots (bool, optional): If plots should be generated. Defaults to False.
        """
        self.model.eval()

        # setup score tracker
        image_names = []  # image names as str
        binary_dice_scores = []  # binary dice scores per image
        binary_jaccard_scores = []  # binary jaccard scores per image
        pq_scores = []  # pq-scores per image
        dq_scores = []  # dq-scores per image
        sq_scores = []  # sq-scores per image
        f1_ds = []  # f1-scores per image
        prec_ds = []  # precision per image
        rec_ds = []  # recall per image

        inference_loop = tqdm.tqdm(
            enumerate(self.inference_dataloader), total=len(self.inference_dataloader)
        )

        with torch.no_grad():
            for image_idx, batch in inference_loop:
                image_metrics = self.inference_step(
                    model=self.model, batch=batch, generate_plots=generate_plots
                )
                image_names.append(image_metrics["image_name"])
                binary_dice_scores.append(image_metrics["binary_dice_score"])
                binary_jaccard_scores.append(image_metrics["binary_jaccard_score"])
                pq_scores.append(image_metrics["pq_score"])
                dq_scores.append(image_metrics["dq_score"])
                sq_scores.append(image_metrics["sq_score"])
                f1_ds.append(image_metrics["f1_d"])
                prec_ds.append(image_metrics["prec_d"])
                rec_ds.append(image_metrics["rec_d"])

        # average metrics for dataset
        binary_dice_scores = np.array(binary_dice_scores)
        binary_jaccard_scores = np.array(binary_jaccard_scores)
        pq_scores = np.array(pq_scores)
        dq_scores = np.array(dq_scores)
        sq_scores = np.array(sq_scores)
        f1_ds = np.array(f1_ds)
        prec_ds = np.array(prec_ds)
        rec_ds = np.array(rec_ds)

        dataset_metrics = {
            "Binary-Cell-Dice-Mean": float(np.nanmean(binary_dice_scores)),
            "Binary-Cell-Jacard-Mean": float(np.nanmean(binary_jaccard_scores)),
            "bPQ": float(np.nanmean(pq_scores)),
            "bDQ": float(np.nanmean(dq_scores)),
            "bSQ": float(np.nanmean(sq_scores)),
            "f1_detection": float(np.nanmean(f1_ds)),
            "precision_detection": float(np.nanmean(prec_ds)),
            "recall_detection": float(np.nanmean(rec_ds)),
        }
        self.logger.info(f"{20*'*'} Binary Dataset metrics {20*'*'}")
        [self.logger.info(f"{f'{k}:': <25} {v}") for k, v in dataset_metrics.items()]

    def inference_step(
        self, model: nn.Module, batch: object, generate_plots: bool = False
    ) -> dict:
        """Inference step

        Args:
            model (nn.Module): Training model, must return "nuclei_binary_map", "nuclei_type_map", "tissue_type" and "hv_map"
            batch (object): Training batch, consisting of images ([0]), masks ([1]), tissue_types ([2]) and figure filenames ([3])
            generate_plots (bool, optional): If plots should be generated. Defaults to False.

        Returns:
            Dict: Image_metrics with keys:

        """
        img = batch[0].to(self.device)
        if len(img.shape) > 4:
            img = img[0]
            img = rearrange(img, "c i j w h -> (i j) c w h")
        mask = batch[1]
        image_name = list(batch[2])
        mask["instance_types"] = calculate_instances(
            torch.unsqueeze(mask["nuclei_binary_map"], dim=0), mask["instance_map"]
        )

        model.zero_grad()

        if self.mixed_precision:
            with torch.autocast(device_type="cuda", dtype=torch.float16):
                predictions_ = model.forward(img)
        else:
            predictions_ = model.forward(img)

        if self.overlap == 0:
            if self.patching:
                predictions_ = self.post_process_patching(predictions_)
            predictions = self.get_cell_predictions(predictions_)
            image_metrics = self.calculate_step_metric(
                predictions=predictions, gt=mask, image_name=image_name
            )

        elif self.patching and self.overlap != 0:
            cell_list = self.post_process_patching_overlap(
                predictions_, overlap=self.overlap
            )
            image_metrics, predictions = self.calculate_step_metric_overlap(
                cell_list=cell_list, gt=mask, image_name=image_name
            )

        scores = [
            float(image_metrics["binary_dice_score"].detach().cpu()),
            float(image_metrics["binary_jaccard_score"].detach().cpu()),
            image_metrics["pq_score"],
        ]
        if generate_plots:
            if self.overlap == 0 and self.patching:
                batch_size = img.shape[0]
                num_elems = int(np.sqrt(batch_size))
                img = torch.permute(img, (0, 2, 3, 1))
                img = rearrange(
                    img, "(i j) h w c -> (i h) (j w) c", i=num_elems, j=num_elems
                )
                img = torch.unsqueeze(img, dim=0)
                img = torch.permute(img, (0, 3, 1, 2))
            elif self.overlap != 0 and self.patching:
                h, w = mask["nuclei_binary_map"].shape[1:]
                total_img = torch.zeros((3, h, w))
                decomposed_patch_num = int(np.sqrt(img.shape[0]))
                for i in range(decomposed_patch_num):
                    for j in range(decomposed_patch_num):
                        x_global = i * 256 - i * self.overlap
                        y_global = j * 256 - j * self.overlap
                        total_img[
                            :, x_global : x_global + 256, y_global : y_global + 256
                        ] = img[i * decomposed_patch_num + j]
                img = total_img
                img = img[None, :, :, :]
            self.plot_results(
                img=img,
                predictions=predictions,
                ground_truth=mask,
                img_name=image_name[0],
                scores=scores,
            )

        return image_metrics
    
    def run_single_image_inference(self, model: nn.Module, image: np.ndarray, generate_plots: bool = True,
    ) -> dict:
        """Inference step

        Args:
            model (nn.Module): Training model, must return "nuclei_binary_map", "nuclei_type_map", "tissue_type" and "hv_map"
            batch (object): Training batch, consisting of images ([0]), masks ([1]), tissue_types ([2]) and figure filenames ([3])
            generate_plots (bool, optional): If plots should be generated. Defaults to False.

        Returns:
            Dict: Image_metrics with keys:

        """
        # set image transforms
        transform_settings = self.run_conf["transformations"]
        if "normalize" in transform_settings:
            mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
            std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
        else:
            mean = (0.5, 0.5, 0.5)
            std = (0.5, 0.5, 0.5)
        transforms = A.Compose([A.Normalize(mean=mean, std=std)])

        transformed_img = transforms(image=image)["image"]
        image = torch.from_numpy(transformed_img).permute(2, 0, 1).unsqueeze(0).float()
        img = image.to(self.device)
        
        
        model.zero_grad()
        predictions_ = model.forward(img)

        if self.overlap == 0:
            if self.patching:
                predictions_ = self.post_process_patching(predictions_)
            predictions = self.get_cell_predictions(predictions_)
            

        
        image_output =  self.plot_results(
                img=img,
                predictions=predictions
            )

        return image_output
    

    def calculate_step_metric(
        self, predictions: dict, gt: dict, image_name: List[str]
    ) -> dict:
        """Calculate step metric for one MoNuSeg image.

        Args:
            predictions (dict): Necssary keys:
                * instance_map: Pixel-wise nuclear instance segmentation.
                    Each instance has its own integer, starting from 1. Shape: (1, H, W)
                * nuclei_binary_map: Softmax output for binary nuclei branch. Shape: (1, 2, H, W)
                * instance_types: Instance type prediction list.
                    Each list entry stands for one image. Each list entry is a dictionary with the following structure:
                    Main Key is the nuclei instance number (int), with a dict as value.
                    For each instance, the dictionary contains the keys: bbox (bounding box), centroid (centroid coordinates),
                    contour, type_prob (probability), type (nuclei type). Actually just one list entry, as we expecting batch-size=1 (one image)
            gt (dict): Necessary keys:
                * instance_map
                * nuclei_binary_map
                * instance_types
            image_name (List[str]): Name of the image, list with [str]. List is necessary for backward compatibility

        Returns:
            dict: Image metrics for one MoNuSeg image. Keys are:
                * image_name
                * binary_dice_score
                * binary_jaccard_score
                * pq_score
                * dq_score
                * sq_score
                * f1_d
                * prec_d
                * rec_d
        """
        predictions["instance_map"] = predictions["instance_map"].detach().cpu()
        instance_maps_gt = gt["instance_map"].detach().cpu()

        pred_binary_map = torch.argmax(predictions["nuclei_binary_map"], dim=1)
        target_binary_map = gt["nuclei_binary_map"].to(self.device)

        cell_dice = (
            dice(preds=pred_binary_map, target=target_binary_map, ignore_index=0)
            .detach()
            .cpu()
        )
        cell_jaccard = (
            binary_jaccard_index(
                preds=pred_binary_map,
                target=target_binary_map,
            )
            .detach()
            .cpu()
        )
        remapped_instance_pred = remap_label(predictions["instance_map"])
        remapped_gt = remap_label(instance_maps_gt)
        [dq, sq, pq], _ = get_fast_pq(true=remapped_gt, pred=remapped_instance_pred)

        # detection scores
        true_centroids = np.array(
            [v["centroid"] for k, v in gt["instance_types"][0].items()]
        )
        pred_centroids = np.array(
            [v["centroid"] for k, v in predictions["instance_types"].items()]
        )
        if true_centroids.shape[0] == 0:
            true_centroids = np.array([[0, 0]])
        if pred_centroids.shape[0] == 0:
            pred_centroids = np.array([[0, 0]])

        if self.magnification == 40:
            pairing_radius = 12
        else:
            pairing_radius = 6
        paired, unpaired_true, unpaired_pred = pair_coordinates(
            true_centroids, pred_centroids, pairing_radius
        )
        f1_d, prec_d, rec_d = cell_detection_scores(
            paired_true=paired[:, 0],
            paired_pred=paired[:, 1],
            unpaired_true=unpaired_true,
            unpaired_pred=unpaired_pred,
        )

        image_metrics = {
            "image_name": image_name,
            "binary_dice_score": cell_dice,
            "binary_jaccard_score": cell_jaccard,
            "pq_score": pq,
            "dq_score": dq,
            "sq_score": sq,
            "f1_d": f1_d,
            "prec_d": prec_d,
            "rec_d": rec_d,
        }

        return image_metrics

    def convert_binary_type(self, instance_types: dict) -> dict:
        """Clean nuclei detection from type prediction to binary prediction

        Args:
            instance_types (dict): Dictionary with cells

        Returns:
            dict: Cleaned with just one class
        """
        cleaned_instance_types = {}
        for key, elem in instance_types.items():
            if elem["type"] == 0:
                continue
            else:
                elem["type"] = 0
                cleaned_instance_types[key] = elem

        return cleaned_instance_types

    def get_cell_predictions(self, predictions: dict) -> dict:
        """Reshaping predictions and calculating instance maps and instance types

        Args:
            predictions (dict): Dictionary with the following keys:
                * tissue_types: Logit tissue prediction output. Shape: (B, num_tissue_classes)
                * nuclei_binary_map: Logit output for binary nuclei prediction branch. Shape: (B, H, W, 2)
                * hv_map: Logit output for hv-prediction. Shape: (B, 2, H, W)
                * nuclei_type_map: Logit output for nuclei instance-prediction. Shape: (B, num_nuclei_classes, H, W)

        Returns:
            dict:
                * nuclei_binary_map: Softmax binary prediction. Shape: (B, 2, H, W
                * nuclei_type_map: Softmax nuclei type map. Shape: (B, num_nuclei_classes, H, W)
                * hv_map: Logit output for hv-prediction. Shape: (B, 2, H, W)
                * tissue_types: Logit tissue prediction output. Shape: (B, num_tissue_classes)
                * instance_map: Instance map, each instance has one integer. Shape: (B, H, W)
                * instance_types: Instance type dict, cleaned. Keys:
                    'bbox', 'centroid', 'contour', 'type_prob', 'type'
        """
        predictions["nuclei_binary_map"] = F.softmax(
            predictions["nuclei_binary_map"], dim=1
        )
        predictions["nuclei_type_map"] = F.softmax(
            predictions["nuclei_type_map"], dim=1
        )
        (
            predictions["instance_map"],
            predictions["instance_types"],
        ) = self.model.calculate_instance_map(
            predictions, magnification=self.magnification
        )
        predictions["instance_types"] = self.convert_binary_type(
            predictions["instance_types"][0]
        )

        return predictions

    def post_process_patching(self, predictions: dict) -> dict:
        """Post-process patching by reassamble (without overlap) stitched predictions to one big image prediction

        Args:
            predictions (dict): Necessary keys:
                * nuclei_binary_map: Logit binary prediction. Shape: (B, 2, 256, 256)
                * hv_map: Logit output for hv-prediction. Shape: (B, 2, H, W)
                * nuclei_type_map: Logit output for nuclei instance-prediction. Shape: (B, num_nuclei_classes, 256, 256)
        Returns:
            dict: Return elements that have been changed:
                * nuclei_binary_map: Shape: (1, 2, H, W)
                * hv_map: Shape: (1, 2, H, W)
                * nuclei_type_map: (1, num_nuclei_classes, H, W)
        """
        batch_size = predictions["nuclei_binary_map"].shape[0]
        num_elems = int(np.sqrt(batch_size))
        predictions["nuclei_binary_map"] = rearrange(
            predictions["nuclei_binary_map"],
            "(i j) d w h ->d (i w) (j h)",
            i=num_elems,
            j=num_elems,
        )
        predictions["hv_map"] = rearrange(
            predictions["hv_map"],
            "(i j) d w h -> d (i w) (j h)",
            i=num_elems,
            j=num_elems,
        )
        predictions["nuclei_type_map"] = rearrange(
            predictions["nuclei_type_map"],
            "(i j) d w h -> d (i w) (j h)",
            i=num_elems,
            j=num_elems,
        )

        predictions["nuclei_binary_map"] = torch.unsqueeze(
            predictions["nuclei_binary_map"], dim=0
        )
        predictions["hv_map"] = torch.unsqueeze(predictions["hv_map"], dim=0)
        predictions["nuclei_type_map"] = torch.unsqueeze(
            predictions["nuclei_type_map"], dim=0
        )

        return predictions

    def post_process_patching_overlap(self, predictions: dict, overlap: int) -> List:
        """Post processing overlapping cells by merging overlap. Use same merging strategy as for our

        Args:
            predictions (dict): Predictions with necessary keys:
                * nuclei_binary_map: Binary nuclei prediction, Shape: (B, 2, H, W)
                * nuclei_type_map: Nuclei type prediction, Shape: (B, num_nuclei_classes, H, W)
                * hv_map: Binary HV Map predictions. Shape: (B, 2, H, W)
            overlap (int): Used overlap as integer

        Returns:
            List: Cleaned (merged) cell list with each entry beeing one detected cell with dictionary as entries.
        """
        predictions["nuclei_binary_map"] = F.softmax(
            predictions["nuclei_binary_map"], dim=1
        )
        predictions["nuclei_type_map"] = F.softmax(
            predictions["nuclei_type_map"], dim=1
        )
        (
            predictions["instance_map"],
            predictions["instance_types"],
        ) = self.model.calculate_instance_map(
            predictions, magnification=self.magnification
        )
        predictions = self.merge_predictions(predictions, overlap)

        return predictions

    def merge_predictions(self, predictions: dict, overlap: int) -> list:
        """Merge overlapping cell predictions

        Args:
            predictions (dict): Predictions with necessary keys:
                * nuclei_binary_map: Binary nuclei prediction, Shape: (B, 2, H, W)
                * instance_types: Instance type dictionary with cell entries
            overlap (int): Used overlap as integer

        Returns:
            list: Cleaned (merged) cell list with each entry beeing one detected cell with dictionary as entries.
        """
        cell_list = []
        decomposed_patch_num = int(np.sqrt(predictions["nuclei_binary_map"].shape[0]))

        for i in range(decomposed_patch_num):
            for j in range(decomposed_patch_num):
                x_global = i * 256 - i * overlap
                y_global = j * 256 - j * overlap
                patch_instance_types = predictions["instance_types"][
                    i * decomposed_patch_num + j
                ]
                for cell in patch_instance_types.values():
                    if cell["type"] == 0:
                        continue
                    offset_global = np.array([x_global, y_global])
                    centroid_global = cell["centroid"] + np.flip(offset_global)
                    contour_global = cell["contour"] + np.flip(offset_global)
                    bbox_global = cell["bbox"] + offset_global
                    cell_dict = {
                        "bbox": bbox_global.tolist(),
                        "centroid": centroid_global.tolist(),
                        "contour": contour_global.tolist(),
                        "type_prob": cell["type_prob"],
                        "type": cell["type"],
                        "patch_coordinates": [
                            i,  # row
                            j,  # col
                        ],
                        "cell_status": get_cell_position_marging(cell["bbox"], 256, 64),
                        "offset_global": offset_global.tolist(),
                    }
                    if np.max(cell["bbox"]) == 256 or np.min(cell["bbox"]) == 0:
                        position = get_cell_position(cell["bbox"], 256)
                        cell_dict["edge_position"] = True
                        cell_dict["edge_information"] = {}
                        cell_dict["edge_information"]["position"] = position
                        cell_dict["edge_information"]["edge_patches"] = get_edge_patch(
                            position, i, j  # row, col
                        )
                    else:
                        cell_dict["edge_position"] = False
                    cell_list.append(cell_dict)
        self.logger.info(f"Detected cells before cleaning: {len(cell_list)}")
        cell_processor = CellPostProcessor(cell_list, self.logger)
        cleaned_cells = cell_processor.post_process_cells()
        cell_list = [cell_list[idx_c] for idx_c in cleaned_cells.index.values]
        self.logger.info(f"Detected cells after cleaning: {len(cell_list)}")

        return cell_list

    def calculate_step_metric_overlap(
        self, cell_list: List[dict], gt: dict, image_name: List[str]
    ) -> Tuple[dict, dict]:
        """Calculate step metric and return merged predictions for plotting

        Args:
            cell_list (List[dict]): List with cell dicts
            gt (dict): Ground-Truth dictionary
            image_name (List[str]): Image Name as list with just one entry

        Returns:
            Tuple[dict, dict]:
                dict: Image metrics for one MoNuSeg image. Keys are:
                * image_name
                * binary_dice_score
                * binary_jaccard_score
                * pq_score
                * dq_score
                * sq_score
                * f1_d
                * prec_d
                * rec_d
                dict: Predictions, reshaped for one image and for plotting
                * nuclei_binary_map: Shape (1, 2, 1024, 1024) or (1, 2, 1024, 1024)
                * instance_map: Shape (1, 1024, 1024) or or (1, 2, 512, 512)
                * instance_types: Dict for each nuclei
        """
        predictions = {}
        h, w = gt["nuclei_binary_map"].shape[1:]
        instance_type_map = np.zeros((h, w), dtype=np.int32)

        for instance, cell in enumerate(cell_list):
            contour = np.array(cell["contour"])[None, :, :]
            cv2.fillPoly(instance_type_map, contour, instance)

        predictions["instance_map"] = torch.Tensor(instance_type_map)
        instance_maps_gt = gt["instance_map"].detach().cpu()

        pred_arr = np.clip(instance_type_map, 0, 1)
        target_binary_map = gt["nuclei_binary_map"].to(self.device).squeeze()
        predictions["nuclei_binary_map"] = pred_arr

        predictions["instance_types"] = cell_list

        cell_dice = (
            dice(
                preds=torch.Tensor(pred_arr).to(self.device),
                target=target_binary_map,
                ignore_index=0,
            )
            .detach()
            .cpu()
        )
        cell_jaccard = (
            binary_jaccard_index(
                preds=torch.Tensor(pred_arr).to(self.device),
                target=target_binary_map,
            )
            .detach()
            .cpu()
        )
        remapped_instance_pred = remap_label(predictions["instance_map"])[None, :, :]
        remapped_gt = remap_label(instance_maps_gt)
        [dq, sq, pq], _ = get_fast_pq(true=remapped_gt, pred=remapped_instance_pred)

        # detection scores
        true_centroids = np.array(
            [v["centroid"] for k, v in gt["instance_types"][0].items()]
        )
        pred_centroids = np.array([v["centroid"] for v in cell_list])
        if true_centroids.shape[0] == 0:
            true_centroids = np.array([[0, 0]])
        if pred_centroids.shape[0] == 0:
            pred_centroids = np.array([[0, 0]])

        if self.magnification == 40:
            pairing_radius = 12
        else:
            pairing_radius = 6
        paired, unpaired_true, unpaired_pred = pair_coordinates(
            true_centroids, pred_centroids, pairing_radius
        )
        f1_d, prec_d, rec_d = cell_detection_scores(
            paired_true=paired[:, 0],
            paired_pred=paired[:, 1],
            unpaired_true=unpaired_true,
            unpaired_pred=unpaired_pred,
        )

        image_metrics = {
            "image_name": image_name,
            "binary_dice_score": cell_dice,
            "binary_jaccard_score": cell_jaccard,
            "pq_score": pq,
            "dq_score": dq,
            "sq_score": sq,
            "f1_d": f1_d,
            "prec_d": prec_d,
            "rec_d": rec_d,
        }

        # align to common shapes
        cleaned_instance_types = {
            k + 1: v for k, v in enumerate(predictions["instance_types"])
        }
        for cell, results in cleaned_instance_types.items():
            results["contour"] = np.array(results["contour"])
            cleaned_instance_types[cell] = results
        predictions["instance_types"] = cleaned_instance_types
        predictions["instance_map"] = predictions["instance_map"][None, :, :]
        predictions["nuclei_binary_map"] = F.one_hot(
            torch.Tensor(predictions["nuclei_binary_map"]).type(torch.int64),
            num_classes=2,
        ).permute(2, 0, 1)[None, :, :, :]

        return image_metrics, predictions

    def plot_results(
        self,
        img: torch.Tensor,
        predictions: dict,
    ) -> None:
        """Plot MoNuSeg results

        Args:
            img (torch.Tensor): Image as torch.Tensor, with Shape (1, 3, 1024, 1024) or (1, 3, 512, 512)
            predictions (dict): Prediction dictionary. Necessary keys:
                * nuclei_binary_map: Shape (1, 2, 1024, 1024) or (1, 2, 512, 512)
                * instance_map: Shape (1, 1024, 1024) or (1, 512, 512)
                * instance_types: List[dict], but just one entry in list
            ground_truth (dict): Ground-Truth dictionary. Necessary keys:
                * nuclei_binary_map: (1, 1024, 1024) or or (1, 512, 512)
                * instance_map: (1, 1024, 1024) or or (1, 512, 512)
                * instance_types: List[dict], but just one entry in list
            img_name (str): Image name as string
            outdir (Path): Output directory for storing
            scores (List[float]): Scores as list [Dice, Jaccard, bPQ]
        """
        
        predictions["nuclei_binary_map"] = predictions["nuclei_binary_map"].permute(
            0, 2, 3, 1
        )

        h = predictions["instance_map"].shape[1]
        w = predictions["instance_map"].shape[2]

        # process image and other maps
        sample_image = img.permute(0, 2, 3, 1).contiguous().cpu().numpy()

        pred_sample_binary_map = (
            predictions["nuclei_binary_map"][:, :, :, 1].detach().cpu().numpy()
        )[0]
        pred_sample_instance_maps = (
            predictions["instance_map"].detach().cpu().numpy()[0]
        )


        binary_cmap = plt.get_cmap("Greys_r")
        instance_map = plt.get_cmap("viridis")

        # invert the normalization of the sample images
        transform_settings = self.run_conf["transformations"]
        if "normalize" in transform_settings:
            mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
            std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
        else:
            mean = (0.5, 0.5, 0.5)
            std = (0.5, 0.5, 0.5)
        inv_normalize = transforms.Normalize(
            mean=[-0.5 / mean[0], -0.5 / mean[1], -0.5 / mean[2]],
            std=[1 / std[0], 1 / std[1], 1 / std[2]],
        )
        inv_samples = inv_normalize(torch.tensor(sample_image).permute(0, 3, 1, 2))
        sample_image = inv_samples.permute(0, 2, 3, 1).detach().cpu().numpy()[0]

        # start overlaying on image
        placeholder = np.zeros(( h, 4 * w, 3))
        # orig image
        placeholder[:h, :w, :3] = sample_image
        # binary prediction
        placeholder[:h, w : 2 * w, :3] = rgba2rgb(
            binary_cmap(pred_sample_binary_map  * 255)
        )
        # instance_predictions
        placeholder[:h, 2 * w : 3 * w, :3] = rgba2rgb(
            instance_map(
                (pred_sample_instance_maps - np.min(pred_sample_instance_maps))
                / (
                    np.max(pred_sample_instance_maps)
                    - np.min(pred_sample_instance_maps + 1e-10)
                )
            )
        )
        # pred
        pred_contours_polygon = [
            v["contour"] for v in predictions["instance_types"].values()
        ]
        pred_contours_polygon = [
            list(zip(poly[:, 0], poly[:, 1])) for poly in pred_contours_polygon
        ]
        pred_contour_colors_polygon = [
            "#70c6ff" for i in range(len(pred_contours_polygon))
        ]
        pred_cell_image = Image.fromarray(
            (sample_image * 255).astype(np.uint8)
        ).convert("RGB")
        pred_drawing = ImageDraw.Draw(pred_cell_image)
        add_patch = lambda poly, color: pred_drawing.polygon(
            poly, outline=color, width=2
        )
        [
            add_patch(poly, c)
            for poly, c in zip(pred_contours_polygon, pred_contour_colors_polygon)
        ]
        placeholder[:  h, 3 * w : 4 * w, :3] = np.asarray(pred_cell_image) / 255

        # plotting
        test_image = Image.fromarray((placeholder * 255).astype(np.uint8))
        fig, axs = plt.subplots(figsize=(3, 2), dpi=1200)
        axs.imshow(placeholder)
        axs.set_xticks(np.arange(w / 2, 4 * w, w))
        axs.set_xticklabels(
            [
                "Image",
                "Binary-Cells",
                "Instances",
                "Countours",
            ],
            fontsize=6,
        )
        axs.xaxis.tick_top()

        axs.set_yticks([h / 2])
        axs.set_yticklabels([ "Pred."], fontsize=6)
        axs.tick_params(axis="both", which="both", length=0)
        grid_x = np.arange(w, 3 * w, w)
        grid_y = np.arange(h, 2 * h, h)

        for x_seg in grid_x:
            axs.axvline(x_seg, color="black")
        for y_seg in grid_y:
            axs.axhline(y_seg, color="black")

        fig.suptitle(f"Patch Predictions for input image", fontsize=6)
        fig.tight_layout()
        fig.savefig("pred_img.png")
        plt.close()


# CLI
class InferenceCellViTMoNuSegParser:
    def __init__(self) -> None:
        parser = argparse.ArgumentParser(
            formatter_class=argparse.ArgumentDefaultsHelpFormatter,
            description="Perform CellViT inference for MoNuSeg dataset",
        )

        parser.add_argument(
            "--model",
            type=str,
            help="Model checkpoint file that is used for inference",
            default="./model_best.pth",
        )
        parser.add_argument(
            "--dataset",
            type=str,
            help="Path to MoNuSeg dataset.",
            default="/data/lunbinzeng/datasets/monuseg/testing/",
        )
        parser.add_argument(
            "--outdir",
            type=str,
            help="Path to output directory to store results.",
            default="/data/lunbinzeng/results/lkcell/small/2024-04-22T232903_CellViT-unireplknet-fold1-final/monuseg/inference/",
        )
        parser.add_argument(
            "--gpu", type=int, help="Cuda-GPU ID for inference. Default: 0", default=0
        )
        parser.add_argument(
            "--magnification",
            type=int,
            help="Dataset Magnification. Either 20 or 40. Default: 40",
            choices=[20, 40],
            default=20,
        )
        parser.add_argument(
            "--patching",
            type=bool,
            help="Patch to 256px images. Default: False",
            default=False,
        )
        parser.add_argument(
            "--overlap",
            type=int,
            help="Patch overlap, just valid for patching",
            default=0,
        )
        parser.add_argument(
            "--plots",
            type=bool,
            help="Generate result plots. Default: False",
            default=True,
        )

        self.parser = parser

    def parse_arguments(self) -> dict:
        opt = self.parser.parse_args()
        return vars(opt)


if __name__ == "__main__":
    configuration_parser = InferenceCellViTMoNuSegParser()
    configuration = configuration_parser.parse_arguments()
    print(configuration)

    inf = MoNuSegInference(
        model_path=configuration["model"],
        dataset_path=configuration["dataset"],
        outdir=configuration["outdir"],
        gpu=configuration["gpu"],
        patching=configuration["patching"],
        magnification=configuration["magnification"],
        overlap=configuration["overlap"],
    )
    inf.run_inference(generate_plots=configuration["plots"])