|
import gradio as gr |
|
from gradio_leaderboard import Leaderboard |
|
import plotly.express as px |
|
from pathlib import Path |
|
import pandas as pd |
|
import numpy as np |
|
abs_path = Path(__file__).parent |
|
|
|
def parse_model_args(model_args): |
|
if "deltazip" in model_args: |
|
model_args = model_args.split("deltazip")[1] |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.strip(".") |
|
model_args = model_args.replace(".", "/") |
|
if "espressor/" in model_args: |
|
model_args = model_args.split("espressor/")[1] |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.strip(".") |
|
model_args = model_args.replace(".", "/",1) |
|
model_args = model_args.split("_")[0] |
|
else: |
|
model_args = model_args.split(",")[0] |
|
model_args = model_args.replace("pretrained=", "") |
|
return model_args |
|
|
|
def parse_model_precision(model_args): |
|
if "espressor" in model_args: |
|
if 'W8A8_int8' in model_args: |
|
precision = 'W8A8_int8' |
|
else: |
|
precision = model_args.split("_")[-1] |
|
else: |
|
precision = "Default" |
|
return precision |
|
|
|
|
|
df = pd.read_csv(str(abs_path / "eval_results.csv")) |
|
|
|
df = df[df['metric'] == 'acc'] |
|
|
|
df = df.drop_duplicates(subset=['model', 'task']) |
|
|
|
|
|
df = df.pivot(index='model', columns='task', values='value').reset_index() |
|
|
|
df['precision'] = df['model'].apply(lambda x: x.split(":")[-1]) |
|
df['model'] = df['model'].apply(lambda x: x.split(":")[0]) |
|
|
|
|
|
df['avg_acc'] = df.filter(like='task_').mean(axis=1) |
|
|
|
|
|
df = df.rename(columns=lambda x: x.replace('task_', '')) |
|
numeric_columns = df.select_dtypes(include=[np.number]).columns |
|
df[numeric_columns] = (df[numeric_columns]*100).round(2) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(""" |
|
# π₯ Efficient LLM Leaderboard |
|
""") |
|
task_options = [col for col in df.columns if col not in ['model', 'precision']] |
|
|
|
with gr.Row(): |
|
selected_tasks = gr.CheckboxGroup(choices=task_options, label="Select Tasks") |
|
with gr.Row(): |
|
accuracy_plot = gr.Plot(label="Accuracy Plot") |
|
data_table = gr.Dataframe(value=df, label="Result Table") |
|
|
|
def update_outputs(selected_tasks): |
|
if not selected_tasks: |
|
return df[['model', 'precision']], None |
|
filtered_df = df[['model', 'precision'] + selected_tasks] |
|
melted_df = filtered_df.melt(id_vars=['model', 'precision'], var_name='task', value_name='accuracy') |
|
fig = px.bar(melted_df, x='model', y='accuracy', color='precision', barmode='group', facet_col='task') |
|
return filtered_df, fig |
|
|
|
selected_tasks.change(fn=update_outputs, inputs=selected_tasks, outputs=[data_table, accuracy_plot]) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |