File size: 6,005 Bytes
a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d a58e1d4 1438b6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
from gradio_leaderboard import Leaderboard
import plotly.express as px
from pathlib import Path
import pandas as pd
import numpy as np
from langchain_openai import ChatOpenAI
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
from langchain.agents.agent_types import AgentType
from langchain_google_genai import ChatGoogleGenerativeAI
def explain_df(query, df):
agent = create_pandas_dataframe_agent(
# ChatOpenAI(
# base_url="https://fmapi.swissai.cscs.ch",
# temperature=0.01,
# model="meta-llama/Llama-3.3-70B-Instruct"
# ),
ChatGoogleGenerativeAI(
model="gemini-1.5-pro",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
),
df,
verbose=True,
allow_dangerous_code=True,
)
response = agent.invoke(query)
return response['output']
abs_path = Path(__file__).parent
def parse_model_args(model_args):
if "deltazip" in model_args:
model_args = model_args.split("deltazip")[1]
model_args = model_args.split(",")[0]
model_args = model_args.strip(".")
model_args = model_args.replace(".", "/")
if "espressor/" in model_args:
model_args = model_args.split("espressor/")[1]
model_args = model_args.split(",")[0]
model_args = model_args.strip(".")
model_args = model_args.replace(".", "/",1)
model_args = model_args.split("_")[0]
else:
model_args = model_args.split(",")[0]
model_args = model_args.replace("pretrained=", "")
return model_args
def parse_model_precision(model_args):
if "espressor" in model_args:
if 'W8A8_int8' in model_args:
precision = 'W8A8_int8'
else:
precision = model_args.split("_")[-1]
else:
precision = "Default"
return precision
# Any pandas-compatible data
df = pd.read_csv(str(abs_path / "eval_results.csv"))
perf_df = pd.read_csv(str(abs_path / "perfbench_results.csv"))
# take acc only
df = df[df['metric'] == 'acc']
# dedup
df = df.drop_duplicates(subset=['model', 'task'])
# pivot df, such that the column names are model,task,efficiency
# but keep precision in its original place
df['model_physical_size'] = df['model_physical_size'].apply(lambda x: x/1024/1024/1024)
df = df.pivot(index=['model','hf_name','model_physical_size'], columns='task', values='value').reset_index()
df['precision'] = df['model'].apply(lambda x: x.split(":")[-1])
df['model'] = df['model'].apply(lambda x: x.split(":")[0])
df['avg_acc'] = df.filter(like='task_').mean(axis=1)
df = df.rename(columns=lambda x: x.replace('task_', ''))
numeric_columns = df.select_dtypes(include=[np.number]).columns
# remove physical size from numeric columns
numeric_columns = numeric_columns.drop('model_physical_size')
df[numeric_columns] = (df[numeric_columns]*100).round(2)
df['model_physical_size'] = df['model_physical_size'].round(2)
full_df = df.merge(perf_df, left_on='hf_name', right_on='hf_name', how='left')
with gr.Blocks() as demo:
gr.Markdown("""
# 🥇 Efficient LLM Leaderboard
""")
with gr.Tabs():
with gr.TabItem("Leaderboard"):
# ...existing code...
task_options = [col for col in df.columns if col not in ['model','hf_name','model_physical_size', 'precision']]
with gr.Row():
selected_tasks = gr.CheckboxGroup(choices=task_options, label="Select Tasks")
with gr.Row():
accuracy_plot = gr.Plot(label="Accuracy Plot")
line_plot = gr.Plot(label="Average Accuracy vs Model Size")
with gr.Row():
throughput_line_plot = gr.Plot(label="Throughput vs Average Accuracy")
latency_line_plot = gr.Plot(label="Latency vs Average Accuracy")
with gr.Row():
data_table = gr.Dataframe(value=df, label="Result Table")
def update_outputs(selected_tasks):
if not selected_tasks:
return df[['model', 'precision']], None, None
filtered_df = df[['model', 'precision', 'model_physical_size','hf_name'] + selected_tasks]
# average accuracy of selected tasks
filtered_df['avg_accuracy'] = filtered_df[selected_tasks].mean(axis=1)
bar_fig = px.bar(filtered_df, x='model', y='avg_accuracy', color='precision', barmode='group')
line_fig = px.line(filtered_df, x='model_physical_size', y='avg_accuracy', color='model', symbol='precision')
# set title of bar_fig
bar_fig.update_layout(title=f'tasks: {", ".join(selected_tasks)}')
line_fig.update_layout(title=f'tasks: {", ".join(selected_tasks)}')
with_perf_df = filtered_df.merge(perf_df, left_on='hf_name', right_on='hf_name', how='left')
throughput_line_fig = px.line(with_perf_df, x='output_throughput', y='avg_accuracy', color='model', symbol='precision')
latency_line_fig = px.line(with_perf_df, x="avg_e2e_latency", y='avg_accuracy', color='model', symbol='precision')
return with_perf_df, bar_fig, line_fig, throughput_line_fig, latency_line_fig
selected_tasks.change(
fn=update_outputs,
inputs=selected_tasks,
outputs=[data_table, accuracy_plot, line_plot, throughput_line_plot, latency_line_plot]
)
with gr.TabItem("Find Model"):
query_input = gr.Textbox(label="Enter your query", placeholder="Enter your query here")
response_output = gr.Textbox(label="Response", interactive=False)
query_input.submit(
fn=lambda query: explain_df(query, df),
inputs=query_input,
outputs=response_output
)
if __name__ == "__main__":
demo.launch(share=True) |