|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import paddle |
|
import paddle.nn as nn |
|
|
|
|
|
|
|
|
|
from paddlenlp.transformers import ( |
|
PretrainedModel, |
|
PretrainedTokenizer, |
|
register_base_model, |
|
) |
|
from paddlenlp.transformers.model_outputs import ( |
|
BaseModelOutputWithPoolingAndCrossAttentions, |
|
) |
|
|
|
from ...configuration_utils import FrozenDict |
|
from ...models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel |
|
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from ...schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from ...utils import deprecate, logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class LDMBertPretrainedModel(PretrainedModel): |
|
pretrained_init_configuration = {} |
|
pretrained_resource_files_map = {} |
|
base_model_prefix = "ldmbert" |
|
|
|
def init_weights(self, layer): |
|
if isinstance(layer, (nn.Linear, nn.Embedding)): |
|
layer.weight.set_value( |
|
paddle.normal( |
|
mean=0.0, |
|
std=self.initializer_range |
|
if hasattr(self, "initializer_range") |
|
else self.ldmbert.config["initializer_range"], |
|
shape=layer.weight.shape, |
|
) |
|
) |
|
|
|
|
|
class LDMBertEmbeddings(nn.Layer): |
|
def __init__(self, vocab_size, hidden_size=768, hidden_dropout_prob=0.0, max_position_embeddings=512): |
|
super().__init__() |
|
self.word_embeddings = nn.Embedding(vocab_size, hidden_size) |
|
self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size) |
|
self.dropout = nn.Dropout(hidden_dropout_prob) |
|
|
|
def forward(self, input_ids, position_ids=None): |
|
if position_ids is None: |
|
ones = paddle.ones_like(input_ids, dtype="int64") |
|
seq_length = paddle.cumsum(ones, axis=-1) |
|
position_ids = seq_length - ones |
|
position_ids.stop_gradient = True |
|
|
|
input_embedings = self.word_embeddings(input_ids) |
|
position_embeddings = self.position_embeddings(position_ids) |
|
|
|
embeddings = input_embedings + position_embeddings |
|
embeddings = self.dropout(embeddings) |
|
return embeddings |
|
|
|
|
|
class TransformerEncoderLayer(nn.TransformerEncoderLayer): |
|
def __init__( |
|
self, |
|
d_model, |
|
nhead, |
|
dim_feedforward, |
|
dropout=0.1, |
|
activation="gelu", |
|
attn_dropout=None, |
|
act_dropout=None, |
|
normalize_before=False, |
|
weight_attr=None, |
|
bias_attr=None, |
|
head_dim=64, |
|
): |
|
super().__init__( |
|
d_model, |
|
nhead, |
|
dim_feedforward, |
|
dropout, |
|
activation, |
|
attn_dropout, |
|
act_dropout, |
|
normalize_before, |
|
weight_attr, |
|
bias_attr, |
|
) |
|
|
|
self.self_attn = LDMBertAttention( |
|
d_model, head_dim, nhead, dropout=attn_dropout, weight_attr=weight_attr, bias_attr=False |
|
) |
|
|
|
|
|
@register_base_model |
|
class LDMBertModel(LDMBertPretrainedModel): |
|
_no_split_modules = [] |
|
|
|
def __init__( |
|
self, |
|
vocab_size=30522, |
|
max_position_embeddings=77, |
|
encoder_layers=32, |
|
encoder_ffn_dim=5120, |
|
encoder_attention_heads=8, |
|
head_dim=64, |
|
activation_function="gelu", |
|
d_model=1280, |
|
dropout=0.0, |
|
attention_dropout=0.0, |
|
activation_dropout=0.0, |
|
init_std=0.02, |
|
pad_token_id=0, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.pad_token_id = pad_token_id |
|
self.initializer_range = init_std |
|
self.embeddings = LDMBertEmbeddings(vocab_size, d_model, dropout, max_position_embeddings) |
|
encoder_layer = TransformerEncoderLayer( |
|
d_model, |
|
encoder_attention_heads, |
|
encoder_ffn_dim, |
|
dropout=dropout, |
|
activation=activation_function, |
|
attn_dropout=attention_dropout, |
|
act_dropout=activation_dropout, |
|
normalize_before=True, |
|
head_dim=head_dim, |
|
) |
|
|
|
self.encoder = nn.TransformerEncoder(encoder_layer, encoder_layers) |
|
self.final_layer_norm = nn.LayerNorm(d_model) |
|
self.apply(self.init_weights) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.word_embeddings |
|
|
|
def set_input_embeddings(self, value): |
|
self.embeddings.word_embeddings = value |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
attention_mask=None, |
|
output_hidden_states=False, |
|
output_attentions=False, |
|
return_dict=False, |
|
): |
|
|
|
if attention_mask is not None and attention_mask.ndim == 2: |
|
|
|
attention_mask = attention_mask.unsqueeze(axis=[1, 2]).astype(paddle.get_default_dtype()) |
|
attention_mask = (1.0 - attention_mask) * -1e4 |
|
|
|
embedding_output = self.embeddings(input_ids=input_ids, position_ids=position_ids) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
src_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
if isinstance(encoder_outputs, type(embedding_output)): |
|
sequence_output = self.final_layer_norm(encoder_outputs) |
|
return (sequence_output,) |
|
else: |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.final_layer_norm(sequence_output) |
|
if not return_dict: |
|
return (sequence_output,) + encoder_outputs[1:] |
|
return BaseModelOutputWithPoolingAndCrossAttentions( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class LDMBertAttention(nn.MultiHeadAttention): |
|
def __init__( |
|
self, |
|
embed_dim, |
|
head_dim, |
|
num_heads, |
|
dropout=0.0, |
|
kdim=None, |
|
vdim=None, |
|
need_weights=False, |
|
weight_attr=None, |
|
bias_attr=None, |
|
): |
|
super().__init__(embed_dim, num_heads, dropout, kdim, vdim, need_weights, weight_attr, bias_attr) |
|
assert embed_dim > 0, "Expected embed_dim to be greater than 0, " "but recieved {}".format(embed_dim) |
|
assert num_heads > 0, "Expected num_heads to be greater than 0, " "but recieved {}".format(num_heads) |
|
|
|
self.embed_dim = embed_dim |
|
self.kdim = kdim if kdim is not None else embed_dim |
|
self.vdim = vdim if vdim is not None else embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.need_weights = need_weights |
|
|
|
self.head_dim = head_dim |
|
self.inner_dim = head_dim * num_heads |
|
self.scaling = self.head_dim**-0.5 |
|
|
|
self.q_proj = nn.Linear(embed_dim, self.inner_dim, weight_attr, bias_attr=bias_attr) |
|
self.k_proj = nn.Linear(self.kdim, self.inner_dim, weight_attr, bias_attr=bias_attr) |
|
self.v_proj = nn.Linear(self.vdim, self.inner_dim, weight_attr, bias_attr=bias_attr) |
|
self.out_proj = nn.Linear(self.inner_dim, embed_dim, weight_attr) |
|
|
|
|
|
class LDMBertModelForMaskedLM(LDMBertPretrainedModel): |
|
def __init__(self, ldmbert): |
|
super().__init__() |
|
self.ldmbert = ldmbert |
|
self.to_logits = nn.Linear(ldmbert.config["hidden_size"], ldmbert.config["vocab_size"]) |
|
self.apply(self.init_weights) |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
position_ids=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
outputs = self.ldmbert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
return outputs |
|
|
|
|
|
class LDMTextToImagePipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.) |
|
|
|
Parameters: |
|
vqvae ([`VQModel`]): |
|
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. |
|
bert ([`LDMBertModel`]): |
|
Text-encoder model based on [BERT](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.modeling.html#paddlenlp.transformers.bert.modeling.BertModel) architecture. |
|
tokenizer (`paddlenlp.transformers.BertTokenizer`): |
|
Tokenizer of class |
|
[BertTokenizer](https://paddlenlp.readthedocs.io/zh/latest/source/paddlenlp.transformers.bert.tokenizer.html#paddlenlp.transformers.bert.tokenizer.BertTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`PNDMScheduler`], [`EulerDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`] |
|
or [`DPMSolverMultistepScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vqvae: Union[VQModel, AutoencoderKL], |
|
bert: PretrainedModel, |
|
tokenizer: PretrainedTokenizer, |
|
unet: Union[UNet2DModel, UNet2DConditionModel], |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__() |
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." |
|
" `clip_sample` should be set to False in the configuration file. Please make sure to update the" |
|
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" |
|
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" |
|
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["clip_sample"] = False |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules(vqvae=vqvae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
self.vae_scale_factor = 2 ** (len(self.vqvae.config.block_out_channels) - 1) |
|
|
|
def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `list(int)`): |
|
prompt to be encoded |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
""" |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pd", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pd").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not paddle.equal_all( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because LDMBert can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
text_embeddings = self.bert(text_input_ids) |
|
text_embeddings = text_embeddings[0] |
|
|
|
|
|
bs_embed, seq_len, _ = text_embeddings.shape |
|
text_embeddings = text_embeddings.tile([1, num_images_per_prompt, 1]) |
|
text_embeddings = text_embeddings.reshape([bs_embed * num_images_per_prompt, seq_len, -1]) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pd", |
|
) |
|
|
|
uncond_embeddings = self.bert(uncond_input.input_ids) |
|
uncond_embeddings = uncond_embeddings[0] |
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.tile([1, num_images_per_prompt, 1]) |
|
uncond_embeddings = uncond_embeddings.reshape([batch_size * num_images_per_prompt, seq_len, -1]) |
|
|
|
|
|
|
|
|
|
text_embeddings = paddle.concat([uncond_embeddings, text_embeddings]) |
|
|
|
return text_embeddings |
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / 0.18215 * latents |
|
image = self.vqvae.decode(latents).sample |
|
image = (image / 2 + 0.5).clip(0, 1) |
|
|
|
image = image.transpose([0, 2, 3, 1]).cast("float32").numpy() |
|
return image |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs(self, prompt, height, width, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): |
|
shape = [batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor] |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
if isinstance(generator, list): |
|
shape = [ |
|
1, |
|
] + shape[1:] |
|
latents = [paddle.randn(shape, generator=generator[i], dtype=dtype) for i in range(batch_size)] |
|
latents = paddle.concat(latents, axis=0) |
|
else: |
|
latents = paddle.randn(shape, generator=generator, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
@paddle.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 256, |
|
width: int = 256, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 1.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None, |
|
latents: Optional[paddle.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to 256: |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to 256: |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 1.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`paddle.Generator`, *optional*): |
|
One or a list of paddle generator(s) to make generation deterministic. |
|
latents (`paddle.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
self.check_inputs(prompt, height, width, callback_steps) |
|
|
|
|
|
batch_size = 1 if isinstance(prompt, str) else len(prompt) |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_embeddings = self._encode_prompt( |
|
prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
text_embeddings.dtype, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = paddle.concat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|