File size: 5,858 Bytes
05654ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Tuple

import paddle
from paddle import nn

from paddlenlp.transformers import RobertaConfig as XLMRobertaConfig
from paddlenlp.transformers import RobertaModel as XLMRobertaModel
from paddlenlp.transformers import RobertaPretrainedModel
from paddlenlp.transformers.model_outputs import ModelOutput


def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
    """
    Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
    are ignored. This is modified from fairseq's `utils.make_positions`.

    Args:
        x: paddle.Tensor x:
    Returns: paddle.Tensor

    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = (input_ids != padding_idx).cast("int64")
    incremental_indices = (paddle.cumsum(mask, axis=1) + past_key_values_length) * mask
    return incremental_indices + padding_idx


@dataclass
class TransformationModelOutput(ModelOutput):
    """
    Base class for text model's outputs that also contains a pooling of the last hidden states.
    Args:
        text_embeds (`paddle.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The text embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`paddle.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `paddle.Tensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    projection_state: Optional[paddle.Tensor] = None
    last_hidden_state: paddle.Tensor = None
    hidden_states: Optional[Tuple[paddle.Tensor]] = None
    attentions: Optional[Tuple[paddle.Tensor]] = None


class RobertaSeriesConfig(XLMRobertaConfig):
    model_type = "roberta"

    def __init__(
        self,
        pad_token_id=1,
        bos_token_id=0,
        eos_token_id=2,
        project_dim=512,
        pooler_fn="cls",
        learn_encoder=False,
        use_attention_mask=True,
        **kwargs,
    ):
        super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
        self.project_dim = project_dim
        self.pooler_fn = pooler_fn
        self.learn_encoder = learn_encoder
        self.use_attention_mask = use_attention_mask


class RobertaSeriesModelWithTransformation(RobertaPretrainedModel):
    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
    base_model_prefix = "roberta"
    config_class = RobertaSeriesConfig

    def __init__(self, config: RobertaSeriesConfig):
        super().__init__(config)
        self.roberta = XLMRobertaModel(config)
        self.transformation = nn.Linear(config.hidden_size, config.project_dim)
        self.apply(self.init_weights)

    def forward(
        self,
        input_ids: Optional[paddle.Tensor] = None,
        attention_mask: Optional[paddle.Tensor] = None,
        token_type_ids: Optional[paddle.Tensor] = None,
        position_ids: Optional[paddle.Tensor] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if position_ids is None:
            position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
        outputs = self.base_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        projection_state = self.transformation(outputs.last_hidden_state)

        return TransformationModelOutput(
            projection_state=projection_state,
            last_hidden_state=outputs.last_hidden_state,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )