File size: 7,005 Bytes
f29a3a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/frank-elite/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"import os\n",
"\n",
"from typing import Annotated, Literal\n",
"from typing_extensions import TypedDict\n",
"from langgraph.prebuilt import ToolNode\n",
"from langchain_core.messages import HumanMessage\n",
"from langgraph.graph import StateGraph, MessagesState, START, END\n",
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"from tools import get_job, get_resume"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"GOOGLE_API_KEY=\"AIzaSyA8eIxHBqeBWEP1g3t8bpvLxNaH5Lquemo\"\n",
"os.environ[\"GOOGLE_API_KEY\"] = GOOGLE_API_KEY\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"tools = [get_job, get_resume]\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-1.5-flash-latest\").bind_tools(tools)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def expert(state: MessagesState):\n",
" system_message = \"\"\"\n",
" You are a resume expert. You are tasked with improving the user resume based on a job description.\n",
" You can access the resume and job data using the provided tools.\n",
"\n",
" You must NEVER provide information that the user does not have.\n",
" These include, skills or experiences that are not in the resume. Do not make things up.\n",
" \"\"\"\n",
" messages = state[\"messages\"]\n",
" response = llm.invoke([system_message] + messages)\n",
" return {\"messages\": [response]}\n",
"\n",
"tool_node = ToolNode(tools)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def should_continue(state: MessagesState) -> Literal[\"tools\", END]:\n",
" messages = state['messages']\n",
" last_message = messages[-1]\n",
" if last_message.tool_calls:\n",
" return \"tools\"\n",
" return END"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<langgraph.graph.state.StateGraph at 0x70171ba751c0>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph = StateGraph(MessagesState)\n",
"\n",
"graph.add_node(\"expert\", expert)\n",
"graph.add_node(\"tools\", tool_node)\n",
"\n",
"graph.add_edge(START, \"expert\")\n",
"graph.add_conditional_edges(\"expert\", should_continue)\n",
"graph.add_edge(\"tools\", \"expert\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"checkpointer = MemorySaver()\n",
"\n",
"app = graph.compile(checkpointer=checkpointer)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I can access and process information from a resume and a job description using the `get_resume()` and `get_job()` functions. Based on the content of both, I can identify areas where the resume could be improved to better match the job description. However, I will only use information explicitly present in the provided resume and job description. I cannot add skills or experiences that are not already listed in the resume.\n",
"Based on the job title \"Software Engineer\" and the skills listed in the resume (\"Software Architecture\", \"System Optimization\", \"Team Mentorship\", \"Project Management\", \"API Development\", \"Continuous Integration/Continuous Deployment\", \"Bilingual\"), I can offer the following suggestions for improving the resume:\n",
"\n",
"* **Highlight relevant skills:** The resume should emphasize skills directly relevant to the \"Software Engineer\" role. For example, the \"API Development\" and \"Continuous Integration/Continuous Deployment\" skills should be prominently featured, perhaps with examples of projects where these skills were used.\n",
"\n",
"* **Quantify achievements:** Whenever possible, quantify accomplishments. Instead of simply listing \"Project Management,\" describe specific projects, the size of the team managed, and the positive outcomes achieved. Similarly, quantify successes in system optimization or software architecture.\n",
"\n",
"* **Tailor to the job description:** If the job description provides more detail (which it currently doesn't), further adjustments can be made to align the resume even more closely. For instance, if the job description emphasizes a specific programming language or framework, ensure that expertise in that area is highlighted.\n",
"\n",
"* **Consider adding a summary:** A brief summary at the beginning of the resume could highlight the most relevant skills and experience, immediately grabbing the reader's attention.\n",
"\n",
"I cannot make specific changes to the resume's content without knowing more about the specific projects and experiences. The suggestions above focus on improving the presentation and emphasizing the existing information to better match the job description.\n",
"Exiting...\n"
]
}
],
"source": [
"while True:\n",
" user_input = input(\">> \")\n",
" if user_input.lower() in [\"quit\", \"exit\"]:\n",
" print(\"Exiting...\")\n",
" break\n",
"\n",
" response = app.invoke(\n",
" {\"messages\": [HumanMessage(content=user_input)]},\n",
" config={\"configurable\": {\"thread_id\": 1}}\n",
" )\n",
"\n",
" print(response[\"messages\"][-1].content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "paintrekbot",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|