Spaces:
Sleeping
Sleeping
File size: 41,846 Bytes
3e595a5 95243ee 3e595a5 95243ee 3e595a5 7828fde 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 95243ee 3e595a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.440091Z",
"iopub.status.busy": "2025-01-29T20:09:11.439766Z",
"iopub.status.idle": "2025-01-29T20:09:11.751153Z",
"shell.execute_reply": "2025-01-29T20:09:11.750263Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.440060Z"
},
"id": "xaiioUQni_ga",
"trusted": true
},
"outputs": [],
"source": [
"from modules.data_class import DataState\n",
"from modules.tools import data_node\n",
"from modules.nodes import chatbot_with_tools, human_node, maybe_exit_human_node, maybe_route_to_tools\n",
"\n",
"from langgraph.graph import StateGraph, START, END\n",
"\n",
"from IPython.display import Image, display\n",
"from pprint import pprint\n",
"from typing import Literal\n",
"\n",
"from langgraph.prebuilt import ToolNode\n",
"\n",
"from collections.abc import Iterable\n",
"from IPython.display import display, clear_output\n",
"import sys"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.906458Z",
"iopub.status.busy": "2025-01-29T20:09:11.905241Z",
"iopub.status.idle": "2025-01-29T20:09:11.994921Z",
"shell.execute_reply": "2025-01-29T20:09:11.993761Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.906419Z"
},
"id": "9rqkQzlZxrzp",
"trusted": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAAFNCAIAAAAM0HSGAAAAAXNSR0IArs4c6QAAIABJREFUeJzt3XdAE2cfB/Ang0DIYoQ9RWSIiFtUVNx7oyjiqKNYd11t1TraOuvAva0DHKAoxYUoDlAZigMUZIvsECAhITt5/zhfqhgQJMkdyfP5S5PLPb+78M3t58EpFAoAQRCW4NEuAIKg+mAsIQhzYCwhCHNgLCEIc2AsIQhzYCwhCHOIaBcANaamUsJhS2prZLVcmVSikMtbwdUsAhEQiXhDOsGQRjS21DOkwr+xZsPB65YYxC4R5bzh56XySYY4oMAZ0giGdAKZQpTLWsGXRdTD8bjSWq6stkYqEsj1SHgnT4qzF5Vuqod2aa0GjCW28KqlT6MqFAAYMfXaeFLMbQ3QrqilSvIEuan8qjIx1YjYewyTZACPm74NxhJDku9Wpj3l9B7DdO1KQ7sW1Ut9wnkaVeE90tSrnxHatWAdjCVWRB4pcu5M9fBmoF2IeqU8qGIViobNsES7EEyDexSYcOr3vM4DjbU+kwCALgOM27SnXD9chHYhmAa3lug79Xve+IXWplb6aBeiOTmvec9jqvxX2aFdCEbBWKIs8khR54HG9q6GaBeiaelJ3KJsweAAC7QLwSIYSzQ9j6kkUwkevbR/31WpF/erSAZ4zz46uviNgMeWqOFVS1OfcHQ2kwCAroOMH11lKVrDPRIaBmOJmqdRFb3HMNGuAmW9R5s+vcFGuwrMgbFEB7tEpABAK69PNkuXgcbsEpGQL0W7EGyBsURHbiqfocGb0dLS0kQiEVofbxyFTsxNq1XTzFspGEt05KbxnTpQNNNWVFTU7NmzBQIBKh//JidPam4qT00zb6VgLFHAq5aQSDhzew3d7/rdGzrkLL36tpOINh0ovCppq3g4RmNgLFHAYUvVdFnqw4cPCxYs8PHxGTly5NatW+VyeVRU1Pbt2wEAgwcP7tatW1RUFACgrKxs48aNgwcP9vb29vf3v3PnDvLx6urqbt26nT9/fv369T4+PvPnz1f6cZWTShScCok65txKwWfhUFDLlRrS1bLm//zzz/z8/JUrV/L5/OfPn+Px+D59+gQGBoaEhAQHB1OpVHt7ewCAVCp9+/atn5+fkZFRbGzs+vXr7ezsPDw8kJmcOnVq8uTJR48eJRAIFhYWX39c5QzphFquzNhcHfNulWAsUcDnyCgMgjrmXFxc7ObmNmHCBABAYGAgAMDExMTW1hYA0KFDByOjT49u2NjYhIeH43A4AMC4ceMGDx788OHDulh6enouWrSobp5ff1zlKHQinwtPxv4H7sSiQ09fLWt+5MiRCQkJO3furKysbHzKzMzMFStWDB8+fMKECTKZjM3+7+Jhjx491FFbI0gGeHi32edgLFFAphK4bLUcSi1atGjFihV3794dO3ZsWFhYQ5MlJyfPmjVLLBZv3Lhx586dDAZDLpf/Vx6ZrI7aGsGpkBjS4I7bf+C6QAFyKKWOOeNwuICAgHHjxm3dunXnzp0uLi6dOnVC3vp8c3Ty5ElbW9vg4GAikdjEHKp1a1ZbIzOkqWWvvpWCW0sU0IyJ+mS1rHnkYgaFQlmwYAEAICMjoy51LBarbrLq6moXFxckk2KxuLa29vOtZT1ff1zlKAwCzRj29PMfuLVEgZEZiV0irioXG5uTVDvnX375hUqlent7x8fHAwDc3d0BAF5eXgQCYdeuXWPHjhWJRJMmTUIudURGRjIYjNDQUC6Xm5OT09D28OuPq7bmomyBXApgHz+fI2zatAntGnQRt1Jay5VatVHxUVxhYWF8fPydO3cEAsGSJUt8fX0BAHQ63cLCIiYmJi4ujsvljh492svLKzc399KlS8+fPx8yZIi/v390dLSbm5upqem5c+d8fHzat29fN8+vP67aml8/qrZwNLB0bPWdiakQfN4SHcW5gvRE7qBp8CFgcPNUic84JoMJd2L/A3di0WHtRE66U/kxs9bORXm/BFwud+zYsUrfsrW1LSws/Pr1/v37b968WdWV1jdv3rzs7OyvX3d3d09PT//6dQ8Pj0OHDjU0t4xkLskADzNZD9xaoqb8o/BBGMt/pfL+bORyeWlpqdK3cDjl3xqZTDY2NlZ1mfWxWCyJRMnVnYaqIpFITGaDj5We3pjnv8KOwoCbhy/AWKLp8TWWvYuho4eGHiXBmvQkbk2VtMcwE7QLwRx4+gtN/SaYPYpgqenWAowryRO8fcaFmVQKxhJl09bYX9xZgHYVmiYWyv89Vuy3zBbtQjAK7sSiTyKW/7Mpb/qvDhT1PFaCNRXFon+PFs/a6Egg4NCuBaNgLDFBwJNd3FkwbKaFjbOWdxib84aXdKdy2hq1PCCmNWAsMeTB5XJulaTPGCbTRgt7WC/OETy9wbaw1+87wQztWrAOxhJbCjJqn0RV2LsZWtgZtOlAIRBb/W6eWCjPTeOV5gvZJeLeo01VfmOTVoKxxKKcN7zMlJq8NL5rV5qePp5CJ1IYBANDQqvo74aAx9XWSPlcKZ8r43EkhZkCpw5Ul25UBzcdvQ70HWAsMa0go7aqXMznSvkcmVyukIpV+WXJ5fLXr1937txZhfMEAOgb4pEOByh0gqkVSeuPltUBxlJ3CQSCIUOGIM+aQJgCr1tCEObAWEIQ5sBY6rS63u4gTIGx1Glv375FuwRICRhLnaaBB8Gg7wBjqdOqqqrQLgFSAsZSp9nY2KBdAqQEjKVOKyoqQrsESAkYS92Fw+E6duyIdhWQEjCWukuhULx58wbtKiAlYCwhCHNgLHWamRl89BGLYCx1mlpHFoG+G4ylTjM3hyMwYxGMpU4rLy9HuwRICRhLCMIcGEud5uLignYJkBIwljotMzMT7RIgJWAsIQhzYCx1mqenJ9olQErAWOq01NRUtEuAlICxhCDMgbHUXTgczsvLC+0qICVgLHWXQqF4/fo12lVASsBYQhDmwFjqNNghJTbBWOo02CElNsFYQhDmwFjqNNhPLDbBWOo02E8sNsFY6jRXV1e0S4CUgLHUae/fv0e7BEgJGEsIwhwYS51mbW2NdgmQEjCWOq24uBjtEiAlYCx1GhzsAJtgLHUaHOwAm2AsdRp8sAubYCx1GnywC5tgLHWag4MD2iVASuAUCgXaNUAaNX/+/OLiYiKRKJfLKyoqmEwmHo8Xi8W3b99GuzToE7i11DnTp0/ncrlFRUUlJSUSiaSkpKSoqIhIJKJdF/QfGEud4+vrW68zdYVCAXumxBQYS100Y8YMQ0PDuv9aWVlNnToV1YqgL8BY6iJfX19nZ+e60wpeXl7wvgJMgbHUUbNnzzYyMgIAMJlMf39/tMuBvgBjqaP69evn5OSE9LIFN5VYo83n32prpOwSsUQMrwApN35okKjq8uiBP+Sm8dGuBaNI+nhTaxKZQtBwu9p53ZLPlT4ILy/NFzm4UwQ1MrTLgVorkgH+43u+bTvDoTMsCEScxtrVwljyudJrh4r6TrQ0sdRHuxZIG5Tm1yZHV0xaYqNP1tBmUwuPLc//9WHkPDuYSUhVLB0N+02yDNtbqLEWtS2Wz2Mquw421SNp23JB6GIwSY7tqW+fcTTTnLb9+ZbkCSnGemhXAWkhQzqxrECkmba0LZYyKaDBWEJqQGeSRAK5ZtrStljWcqUKDa06SLcoZEDI19BZfW2LJQRpARhLCMIcGEsIwhwYSwjCHBhLCMIcGEsIwhwYSwjCHBhLCMIcGEsIwhwYSwjCHBhLCMIcGEvlrly9MGBQt9ra2mZ9SiaTpaa++vyVMeN8jxwNbm7rPB4vMyujKVOu37AyaEFgc+ffkH37d0z0G/r5K+/S00Si/x6bUG1zn5NKpYEzJzS+rpq+WhpXb6EwCMZSlf7e/eee4K0tn8+8H6fevh2piopa5E501KLFs4VCgQbawuFwNBrdwMCgkWlUslo0uVDfTZu72NI8sYp+g8VisUrm00Ka3KQQCIQjh842Po1KVgvGt5MIGEsgFArPh5x88OAuq6LcwsJq6JBR0wN+QN6Ki4u9cOkMi1Xm2aHTqpW/m5mZAwBSU1+dDzmZmvYKAODm6rFgwXJXF3cAwPadmx48jAEADBjUDQBwIfRfK0trAEBubtaSZXOzsjLMzCymTA4cM3oiMnOpVPrPmaPRd29wONUODm1mzwry6eMLAJgaMLqqqvJ6ZPj1yHALC8tLF258cxHOnD0edeOqTCbz7T944U8rSCQS8nrkv1fCwkMqKsotLa0HDRzuP2WGvr6+WCw+d/5EbGx0OavM1JQ5dMio2bOCCIT6vdTciY4K3rcdADB+4mAAwC9rNg4fNqaR5m7f+ff69bDcvGwy2bBH916LF60yMjIGAHz8+GFv8Lb0jDQaje7d02f5sl/xePyFi2euR4bV1HCdnV1nzwqytrYNmD4WABA4fc7cOQsBAPUm6Nqlx9erpZEFWb9hpZ2tA5FIvHHzmlQi8fb2Wbb0VyqV2shCYYqux1Imk61dtzw17dXECVOd27rkf8j9WPih7m/03PkTU6bMEImE586f2LZ9w57dRwEApaXFIrFoRuA8PB4fGRn+629LL4ZGGRgYBAbMYZWXlZQU/fbrHwAAUxMmMpPsnEz/KTMGDRx+N+bmnr1bhULBZL/pAIBdu/+6d/924PQ5jo5t792//fuGVfv2nujYsfOmjTvX/LK4k1fXyX7T9f4fsEZkZmXoGxgEzV+alf3+ytULJibMmTPmIeEJvxIyccJUBwenjx/zL4edKywqWPvrHwQC4cWLxF69+1lb2WZnvw8JPU2j0adMrn/E2LNHnymTA8PCQ7ZtCaZQqLa29o039+5dqr2945AhI6uqKiOuXeLX8rdtCUZ27AsK8hctXFlby3/56jkej3+RknTi5MFBg4b37N47KfmpoLbW2Mjkzz92bf7jV6SJrycAAHy9WhpfkLDwkIEDhm7dElzwIW/Xnr9MTc0WBC1raKGwRtdj+ejx/Zevnq9e9fvIEeO+fnf3rqOWllbIlu3EyYMcTjWDYTR48IghQ0YiE7i6tl+xckFq2qvu3bxtbe0ZDKPKKranZ6fPZzJ0yKip/jMBAGNGT1yybO6Zs8dGj5rIYpVF370xc8a82bOCAAD9+w0KnDnhzNlje3YfdXNtTyQSTU2Z9ebTEGtr2727jxEIhKFDRxUU5D18FDNzxryKClbohdPr123p328QMpmpqdne4G2LF62i0+iHD53F4T51r1hcUvg4LvbrWBobm1hb2wIA3N07MBhGjTcHAFjx89q6eRKJxJDQ0yKRSF9fv7S02KWd2+hREwAASCulpcUAgAnjpnh4dKxbkz59fOs+rnSCr1cLgUBoZEFsbe3X/vYnDodzd/N4HB+b/PzZgqBlDS0U1uh6LJOSn+rr6w8bOlrpu3Q6A/mHUxtnAEA5q4zBMMLhcHHxD8LCQz58yEMG2KmqZDelLQKBMG6M3/adm96/f/ex8AMAwMdnAPIWDofr3s075t6t71gEKoVat3l3dGz7Lj0VAPDiRaJUKt2ydf2WreuRt5CeRytY5XQavaqq8tz5E8nPE2pquAAAGpXWwuYAABKJJOLapZh7t8rLS/X1DeRyeXV1lYWF5ZDBIy9cPLP/wM4ZgfOMjU0AAN49fWg0+tZtvy9ZvNrb2+frJr45QZ1GFsRA36AusRYWVmlprWnca12PZVUlm2lq9vWRVT04PB7Z4wUAnDt/8p8zRydNnPbjvCXsyorNf/wqb3I/JaZMMwAAn8/j83kAAGMjk7q36HRGbW0tn8+nUCjfvTgEAkEqlQIA2JUVAICtW4LNzSw+n8Da2raykv3jgulksuGcH36ytrY9ffow8hvRkuYUCsXadcvfZ76bNfPH9u07xsXFXrp8Dlkt8+YuMjY2CQk9ffvOvz/OXzph/BRTU+bB/acPHdnz27rlHTp4bVi/DTlor/PNCRBNXxA9op5c3pp68db1WFKptMqqJm3rECKR6MLFf0aNHL940UoAQHl5Wb0JGu8Ou7q6CgBgYmIqEAoAAFwuh8k0Q96qrGQTicS6KwQt7FabRqMj/7C3d6z31r9RV6uqKg8dOGNhYQkAMDe3bDyWTank9euUFylJ69b+NXjQcABAUWFB3Vs4HM5vUsCI4eP2Bm/df2Cnc1sXT89O9vaOO7btT3mZvGHjqh07N+36+3C9GTY0wefFNHdBmrtQKNL165adO3cXCAT3Y6PrXkF+/hsiFApEIpGLizvyXw63GgAgl3/aWhoYkCsr2XX//dqjR/doNHrbti7u7h1wOFxCYjzyulgsTkiM9/DoiGy3yQZkNruihcuFw+GuXb9c94pA8OlKHZdbbWRkjPwpI4tQ9zeqp0cSCGrr1gDZgAwAqKhgfbM5ZD24tHP7/L/IekAuSFAolNmzFyBnjOoudXTp3N3bu6/SOwSUTlBvtTSyII1o+kKhSNe3lkMGj7weGbZ9x8aMjLfObV1y87JfpCQePxra0PQMhpGTk3PEtUsmJqZ8Hu/sueN4PD43Nxt516tjl9t3/t2zd6tnh040Gr13734AgOi7N0xMTA0MyIlJT549i1u6ZA2JRLKxth02dPSZs8dkMpm1te3Nm9cqK9lrf/sTmY+nZ+f7sXcuXDxDo9E92nd0cnJu7nLZ2thNnDD1asTFtet/9unjy2ZXXI8M27Z1n0s7t06dul27Hnb6nyMeHl5xcbGJiU/kcjlyNquds6tQKNz0xy8/LfjZxtrWo4MXgUA4eHjXiGFjRWLR2DGTGmquvbsniUQ6cfLgqFETcnOzLlz8BwCQl5ttY2276Y9fqBRqt67eyG+Qq4t7esbbzX/8Mn7cFDLZMCnpqZtr+3pza2iCequlkQVpZM00faFQRNi0aRPaNahSajzH3p1KpjZ1rAgikdi//xAOp/rho5gnTx9yuNW+/Ye0b+/5PvNdcvKz6QE/6OnpAQCKij7eu3979KgJTKaZV8cuiYlPrkeGfSz8MH/+Ejs7h6ioq5P9phMIBCcn55oazv3YO6/fpDAYRl279LgacXHa1Fl3Y27eu39boVD8OH9J3d9B9269+Hze7TuRsbHRFEPKqpXru3fvhbzl4dExO/t9zL1bWVkZbm4eDvZtGqo/9sHdWj6/7lroi5SkjIy3gdPnAAC6d+9laEh59iwu9kF0YVFBn979e/fqRyaTHRzaKBTy65HhcY/vW9vYrVr5e2rqS4GgtlOnbm3atBUKBcnJz9xdPeztHek0upmZxcOHMc+exdXUcIcNG91QcxQKxdHR6U501J3oKKlUum7tXxUV5Wlpr4YNG11cXJiQGH8/9o5AKPhx/hIfH18uh5OTk/ngwd2UlCQvry4/L19LoVABAOdDTnXw8OrSuXtDE9RbLf36DmxoQerV+fx5QlZ2RsC02QCArxeqiX8qvCop66PAvQe9idO3hLYNDXRhe4HPREtji29f7oOgZinJFbx9WjlhkY0G2tL1nVjs4/F406Yr/0UP+nEZcj0Q0jIwllhnaGh4/NgFpW/RaQyNlwNpAowl1uHxeOTeWkh36PoFEgjCIBhLCMIcGEsIwhwYSwjCHBhLCMIcGEsIwhwYSwjCHBhLCMIcGEsIwhwYSwjCHG2LpZElSQG06pkYCCMUADCYepppS9tiSSLh2MWtoH9eqNVhFQoMaU19jreFtC2WbToYVpXCWEKqx2GJHdwNNdOWtsWybUcaHq9Iud+MXrMg6JueRpWb2ZCs2pA105y29U6AeHiFJZMCpq2BmY0BnoBDuxyotZJK5KxCYXEO36qNQZcBxhprVztjCQDIfsXLecMTixRNPNQUCARyubwlfbQqJRKJ5HI5mayhX9lmUSgUQqGwodoUCoVYLNbX19dkSXw+v6G3VP7VNIWJpT6ZinfpSnVw02jrWhvLpggPD//333+PHDliYGCQkJDg49NYB97NUlhYyGAw5HL5jRs3pk+frqrZqtbJkyfPnj27YsWKCROU9zyyevXqESNGDBw4UGMlnTt37tSpU1+H09LS8saNbw+RpDV0LpZZWVnXrl0bPXp0+/btL1y40KlTp/bt63eI2EJnz56NiIi4fPly46M1oovNZi9cuDAnJ8fFxSU0NLRuXIDP8Xi8iooKR8f6HUCr1fLly+Pj4z9/hUAgJCYmarIG1GnbKR+lpFJpdHR0UlISAODx48cODg7Ozs4AgICAABVm8vXr19HR0QCAjh07RkZGYjmTAICIiIj8/HwAQH5+/pUrV5ROQ6VSNZxJAMAff/zh4OBQrwwN14A6bY5lcXHxo0ePkF2jR48eWVtbAwDmzp3r7+9PasIAdU0nEokyMjL27dvn5uYGAOjcubMKZ64ObDY7JiYGGVJFLBZHREQg//7av//+e+nSJU3WRqfTly1bZmb2aQwIfX39bt26bd++XZM1oE+hdfLz8xUKRU5OzujRoyMiItTaVnp6emBgYEVFBYfDUWtDqnX8+PEePXp0/T9vb+/Lly8rnbK2tnbx4sUaL1ARHBzcs2fPrl27Iv8tLCxUKBQRERFJSUmaL0bztGdrKZPJhELhqFGjTp8+DQCwtraOiopq6GRGy2VnZwMAUlNTf/vtN1NTUzpdE51tqwSbzY6Ojv588yiRSBrajyWTyQcOHNBgdZ8sW7bM1dWVSPzUM6ONjQ0AwMfH59q1axUVFY2csNUO2nDKZ//+/devX799+zYej2ez2ZaWlmptLj8/f+XKlUFBQUOHDlVrQ2qyb9++c+fOITtKdWd6SCTSs2fPlE5fXV2dn5/fqVOTxsDVALFYXFhYuHfv3vXr11tYWDThE60Q2pvr75SXl7dly5asrCyFQnH79u3q6moNNJqYmKhQKOLj4/Py8jTQnLrxeLy+ffs2ZcoZM2akpaWpv6JmePLkyalTp5ClQLsW1WtlO7FpaWkPHz4EAMTHx7u6urZp0wYAMHz4cAZD7f2LT5s27dWrVwCAPn36aP78pDrI5XIPD4+mTLlx48bS0lL1V9QMvXv3njNnDgDg1q1bf//9txbs9H0B7d+FJikrK1MoFAkJCTNnznz58qUmm37x4kV6ejpyDkmT7WpASUnJyJEj0a5CBS5evJicnCyVStEuRGWwvrUUCoXz5s3bsWMHcj3w7NmzmjzIiYyMPHLkiK2tLQDAyclJY+1qBp/PRy4aNcWzZ88uXFA+FArqpk6d2q1bN4VCMWrUqNTUVLTLUQGMxjI1NXXr1q3I8f2iRYt2796NnBXUTOtyufz69esAAC8vrxMnTmjr5ezy8vKm3/Laq1evkJCQsrL6g9JjB5FIPHXqVEJCAnKaCu1yWgRzseTxeACAgwcPenl5IReXNXx1vra2tmfPnsjpXO04hmxIWVlZs3YBLl68iPFDOEtLy/nz5yMHnPv370e7nO+HoVhevny5W7duEokEAHDs2LFRo0ZpuIDU1FQWiyWXy5OTk729vTXcuua9e/eu3m1ujWMwGHg8XiqVqrMo1QgICGAwGK9evWro7iWMQz+Wz549e/z4MQDA1tb2+fPnxsaae6rtczdv3ty9e7exsbG27rJ+TSQSubq6Nusjubm5y5YtU1tFqjRr1qwOHTpIpdJNmzahXUuzoRzLO3fuhIaGuri4IBceUKnh3bt3AAArK6szZ87U3Vai9QQCwf379zt06NCsT3l7ew8YMCArK0ttdakSkUjU19fv2rXr5s2b0a6ledC5y+fy5cvJycm7du2qqamh0WiaL6DOgQMHiETiTz/9hGINqIiPj793715r3JJ8B6lUSiQSr169OmnSJLRraRJNby2rq6sFAsGHDx82bNgAAEAxk8jJOmdnZx3MJHJSpFevXt/32bi4uJiYGFVXpEbITlDdCaFWQGNXSN+8eTN48GAWi6WxFhtx+/bt8+fPo10FakQikbe3d0vmMG3atIyMDNVVpCHIkyjZ2dloF/INmthaIgdvRUVFly9fZjKZGmixcSKRKC4uLjAwEO1CUHP37t0ffvihJXO4cOEC8ih564I8iZKdnX3ixAm0a2mMemMpk8kWLlyYnJyM3LlqYmKi1uaaoqKiQigUbtmyBe1C0LR3794pU6a0cCYfP35MS0tTUUUaNWzYMJlMxuFw0C6kQQT1HfSzWCypVGpra6v5K5ANWbNmDZVKdXd3R7sQNCH7LIMGDWrhfIyMjHbt2oXH41vjbYnIFfKamhpDQw31yNw86tgz/vjx48CBAysrK9Ux8+/25s0b5JZ3Hefv7y8UClU1t9TUVIlEoqq5adjLly/nzJmDdhVKqOUCSXR0dM+ePY2MjFQ+5+9WUlJCIpFMTU3RLgRlmzdv7ty589ixY1U1Q5lMVlJSgtzN3xrxeLzCwkKkEybsUOWxZWFh4axZs5B9d0xl8tWrV+vXr4eZTExMLCsrU2Emkd4iWSzWvHnzVDhPTaJSqXQ6HXmSFkNUuOVdt24d1nZcEefPn+fz+WhXgb7evXvLZDJ1zLmkpARr3Rc0y5YtW65cuYJ2Ff9RzU7s9evXx48fr4pfCUhdZs2atXr16ubebdd0bDZbJpOZm5uraf7qFhcX17lzZ4zcEa2Cndg1a9YgnXdg099//11QUIB2FSjbtWvXuHHj1JdJAICpqWlUVNThw4fV14Ra9e3bFyOZVM09sVlZWe3atVNRPSrG4XAmTJgQGxuLdiFoOnv2LIfDWbp0qQbaQrr8UXfng2ry119/9e/fv2/fvmgX0rKt5Y4dO8RiMWYziTh//jzaJaApIiKisLBQM5lEAmlpaRkaGqqZ5lRr9uzZUVFRaFcBWrS1nD179sGDB7Gz3Ye+dvr0aQ6H8/PPP2u43Zs3b0okEni64btpQ/fNjXj06FFRUVFAQADahaDg5s2bb9++XbNmDSqtJycnd+/eHZWmW6K0tLSsrAzpsAZF37MTe+bMmfT0dDUUo3pyuTwlJQXtKlBw5cqVxMREtDIJAEAy+csvv6BVwPchk8ma37n4WrPvib148SKBQNDkUKQtYW5u7urqqms3EoSEhOTl5SFPtKKrTZs2R49deE/DAAAgAElEQVQexcJJlCYyMDDg8/k2NjboPp2v5TuxOmjr1q1mZmbYed6Xx+NRqdScnJy2bduiXUur0byd2NDQUKRnulbk2LFjretR+pZYvny5q6srdjJZN2jssWPHnjx5gnYtTZKRkYH6gU8zYrlz504ikainp6fOelTP19f3n3/+QbsKTVi6dOmkSZOw2V3Nzp07MzMz0a6iSXJycpDOu1HU1J1YoVBYUlKC5bt5GiEUCkkkEh6Pfu+bapKTk+Pv7x8WFob9Rx9PnTo1d+5ctKtoTG5ubkpKip+fH4o1NDWWtbW1+vr6BAJB/SWpnkAgKCoqao2dXDRFbGzs0aNHw8LC0C6kSXJyctasWXP16lW0C8G0Jm1AkpOTV6xY0UoziZz1vnHjhlbe7rNnz55Xr161lkwCANq2bRsSEoKMiYh2LcqVlZU1NAKvxjQplo8ePVqxYoX6i1Gj5cuXi8ViZIATrTF37lwLC4tW99UgQzwVFxdv3LgR7VqUSEpKio6ORrcGHb1AMnHixKqqqgcPHqBdyHdKS0vbvXv3smXLsDN2+ne4ceNGp06dzM3NSSQS2rX858WLFyKRqHfv3ijW8O1YJiUlmZuba8fYVbGxscXFxWFhYcXFxcipy5kzZ6JdVLOFhobevXv39OnTrfewoo5UKk1JSeHxeHU3qPTu3btdu3Znz55FuzQ0fXsnduHChc0a1wnLBg4ceOTIESSTCoUC6cC2dVm9enVZWdnZs2e1IJNIf+c9evRITU0tLy8HAAwdOlQsFhcUFDx8+BCtkhISElAfHvMbsczLy9u3bx8Oh9NUPerVvXt3kUiE/BvpYxvtipohJydnwIABo0aNanUHk9+0bNkyMpk8cuTIyspKAACXyz137hxaxaxcudLAwACt1hHfGKCqTZs2rfRaZT0zZ85MT0//fI8dj8dXV1ezWCwzMzNUS2uSy5cvp6SkREZG0ul0tGtRCxqNVlpailxbxuFwxcXFDx8+9PX11XAZXC73999/Rz2W39habtiwQTvOCZ07d27x4sW2trafD0vO4/Fyc3NRratJVq9e/eHDhx07dmhrJpFDys/v92CxWJcuXdJ8GXQ6ffjw4Zpvt57GYpmcnFxeXq41e7CzZs0KDw9fvny5o6MjhUJRKBQ1NTX5+flo19WY7OzsgQMHjhgxAsVHtDRgxIgRSI/ScrkceQWHw+Xm5sbFxWm4kvv37ycmJmq40a81dia2oKCAQCAgo6lohlQiF/DkGmgoJibmxo0bJSUl3t7emD1Ui4mJiYyM3LZtW0seMlIoAN2kFYyl+88//2RlZX38+JHFYuGkZIFQqFAo3Nzcdu3apckyfv3118DAQDX1Rdb07wIr1y3Tk7hv4jiVpWIyVXMnGCUSCZbvvBeLRKTPdrm/j6m1flFWrXMnau8xpoY0rOfz0VVWZkoNwwLHKZfKZTK5QoHce6AxUomEqLY/CRMr/aKsWmcvSs+RpnSTxlppLJZBQUGHDh3SwLjlSXcrK4olnfqb0BqtFfo+ErG8qkwUe6HEf5Vd438NKJKI5ac35PedaG5mRzYw1IZrP0pJJfLqcnHs5ZKJi2yMzRu8iaLBY8vc3NzKykoNZDLxTiWHJe07wQJmUk30SHhzO/LUX5wu7foo4MvQLke5c39+GLfIzs6VqsWZBAAQ9fBMG4MpK9pcO1TErWzw0eUGt5ZcLre2tlbdHX5WlYufRrH7+VmptRUIUfpBUPCOO2iqBdqF1Jd0t5KoR2jXhYF2IZpTUSTMSuEMDVT+XTS4taTT6RrohLeiSKRQaMmZXuwzMiPlpvLRrkKJwkwB1Vi39pWMLfSzX9U09G6Dsdy7d++jR4/UVtUnPI7MzA7lS7e6w8CQYG5H5nOkaBdSH4GAMzJv6cmt1oVAxNm7UqpZYqXvNhjLN2/eGBsbq7MwAACQiOQSoSauiEAIdrEQgxei2SUioHt/BZVl4oa+iwbP6Gzbtq31jr4EQa1ag7FspaO7QJAWUL4TW1NTM336dI0XA0EQaDCWbDZbKBRqvBgIgkCDsbSysjpy5IjGi4EgCDQYS319fXi+B4LQojyWT5482bNnj8aLgSAINHZsWVPT4C0IEASplfILJAMHDuzXr5/Gi4EgCDQYSzj0OgShSPlO7PXr13W8o04IQpHyWFZVVbWWY8u/tq6fORuLQ8c17l16Wl3XmEgvxoEzJxw5GoxqUdpPHau9tLSkpLRYFdX9R3ksJ02aNGPGDNW2BNW5Ex21aPFsoVBQ9woOh6PR6Kj3g6jd1LHai4oLAwLHvn+v4n7AlR9banHHh1jw+Q82gkAgHDnU7KMGDqcah8fTafDLahJVrfbPyaRSdfSGpTyWSBedU6dOVXl7KhH74O7Zc8fLykocHZzqujBE9kn+OXM0+u4NDqfawaHN7FlBPn0+9f9bVlZ68vSh5ORntbX8tm1dpkwOHOA75NTpw5fDzt+982nUtIz3735aOHP7tv09e/Rev2GlvZ2jUCS8e/eGQqHo0rnHpInTQkJPpb19bWJs+sPsBUOGjEQ+VVJafPjwnhcpiSSSvks7tzlzFrq5tgcArN+w0s7WgUgk3rh5TSqReHv7LFv6K5VKvRMdFbxvOwBg/MTBAIBf1mz08uoaMH0sACBw+py5cxZmZb9fsnTO9q37j588kJOTaWFhFTR/aZ8+/ZHmoqNvhF78p7y8tI1jWxweb2lhteH3bRr/BlB25eqFQ4f3TJw49dGjezxeTXt3z6CgZa4u7gCA8vKyU/8cTkx8wufz7OwcAqb9MHjQcGRT2fhqR4YnPnnq0P3YO2KxyM7WYcqUGQMHDEWai31wd7Lf9FOnDrErK9q1c1u1Yr29vWNJafGsH/wAAJv/+HUzAMOGjf51zSaVLKDynVgul8vhcFTSgMrdu3/nz7/Wmpowlyxe3b17r5zcrLq3du3+63LY+dGjJqxb+5elpfXvG1a9efMSAMBmVyxaMvv584Sp/jNX/rzOqY1zRUX5Nxu6eOksAGDP7mP+U2bGP3m4+pdFffr47t1z3NnZdfvOTQUF+ciclyydw63hLF60KujHpRKJZNnyeXl5OcgcwsJDSkuLt24JXrxo1cNH90JCTwEAevboM2VyIABg25bg/cEne/boY2xk8ucfuz7vNkkkEm3+81e/SQHBe45bWlj9tXUdh1MNAIh/8nD7zk1eHbusX7tFj0RKT0/zmxSgntXcCkjE4j8371r725/VnKoVK4OQAzypTJqR8XbcWL+fgpbT6YwtW9enZ7xtymqXy+Xr1v/87Nnj6QE//Lx8rbOz659/rb11OxJ5Nz09LSzs/MqV6//YvItVXrZtx0YAgKkJc93avwAAP8xesD/4ZGDAHFUtmvKt5dSpUzHSUWU9IpHo4KFdHTt2/nvnIWRsnKKij9k5mQCAgoL86Ls3Zs6YN3tWEACgf79BgTMnnDl7bM/uo+fOn6iurjp98rK9vSMAYNiw0U1py8GhzdLFqwEALu3cbt2+7ubqMWH8FADAooUr4+IfvHr9wt7e8XzISWMjk91/H0G+3SGDRwbOHH/j1rUli1YBAGxt7df+9icOh3N383gcH5v8/NmCoGXGxibW1rYAAHf3DgyGEdKWTx/fek/ELlm8GvmpnjdvcdCCwNdvUvr1HRgZGe7o6LRyxToAgJubx2T/EQmJ8e3be6pnZWPdgqDlhoaG7gC4urQPnDn+2rXLC3/62drK5szpcGRljhgxbsKkwU+ePHR38/jman8cF/sm9eXF0Cgm0wwAMHjQcIGg9mrExZEjxiETbPlrr4mJKQBg4sSph4/s5XA5DDrDpZ0bAMDe3tHTU5UjGrayY8vUtFccTrXfpIC68arw///H6zcpAAAfnwHIf3E4XPdu3jH3bgEAEpOedOncHclk0+mT/uvGgkTSr+s+1NzcAjmuAwAkJj4pZ5WNHN23bkqJRMIqL0P+baBvUPetW1hYpaW9bnrrZANy3QcBABUVLABAOavM1tYeeZ3JNDMwMKip4TZrobSShYWlvb1jesan4aWzczLPnD2GnIaRyWSVleymzCQhIV4qlQYEjq17RSaTUSj/XcA3+PIbYVewGHR19QmmPJZhYWEKhcLf319NrX638vJSAIClpfXXb/H5PACAsZFJ3St0OqO2tpbP51dVVXbt0lNVNSBJQ/YmKqvYvXr1/XHeks8n+Py7rKNH1JPLv6czSD2iHgAA+ay1te379+/EYjGJRMrNzRYKhc7Ori1YFO1Bo9GRX6iUl8m//Lqkc6dua1ZvpBhSNmxaLVc0qT+Sqiq2qSlzz66jn79IUNYhK/KNyL7r22wi5bGsrq7G5k6sEcMYAFBdXfX1W0ymOQCAy+UgOyEAgMpKNpFINDAwoFJplVVKfjJb3qsNjUbncKqbux1GfMcanuY/a8WqBStWLejapUdMzC031/bDhjZph1zrVbDK7ewdAQDnz5+0trbduiUYOayo2+mo09Bqp9Ho1dVVFhZW+i3uyb7llJ/ymTx58uTJkzVezLe1beuCx+Pv3b/99Vvu7h1wOFxCYjzyX7FYnJAY7+HRkUAgdOncPSUl6fNrvlKpFADAYBhLJBIO99PJrdLmXxTu0qVHWtrr95npda8IBIJGPwHq/laQ/dJm6dDBa9LEaXK5vLi40N9/ZvDeExroXxv7Xr16UVRc6NG+IwCAw612buuCrBaxWFwrqK07V9/4au/SpYdMJvs36krdK035KvX1DZAdWtUtDWhwa6mBPu++j4WF5YjhY2/eui4WiXr06M1mVyQmxhsbmwIAbKxthw0dfebsMZlMZm1te/PmtcpK9trf/gQAzAic9/TZ48VLfpg4YaqJienz5wlksuGqleu7de2Jw+EOHtrlNykgPy/n2In9za1n1swfExLiV69ZNGVyoLGxSVLSU5lc9tcfuxv/lEcHLwKBcPDwrhHDxorEorFjmnqXUviV0Jcvk6dMmYHD4YhEYmFhQdu27Zpbs9bYG7y1a9eexcWFVyMumpiYThjvDwDo1KlbdHTUrduRdBoj/GpoTQ03Py9HoVDgcLjGV/uQwSOjbkQcPbavpLTYpZ1bdnZm/JMHZ05fafxmA3NzC2srm7ArIQZkMpfLmew3XSU/lMpnceXKFYVCgc0N5pLFq0kk0r37d56/SOjQoVPbti51x/TLl/1KoVCvXb9cU8Nt49h26197u3TujpwoO7Dv9LHj+0JCT+kR9ezsHZGv0MGhza9rNp07f2JZ3LyOnp2D5i/dvrN5151srG0P7j995Fhw6IXTOByuXTs3ZM7f/NTKFetOnjp08NCudu3cmh5LV5f24VdCt2xdX/fKmNETV/y8tlk1aw2pVHr02D6xWOTl1fWnoOUUCgUAMGf2T5XsigMH/6bR6KNHTZziF7gneOvLV8+7dO7e+GrX09P7e8ehEycPxMZG37gRYWtrP3aM3zczhsPh1q/fuvPvzQcP7TI3txw5crxKzgMpH+zg5MmTEonkp59+ankDjUuKrhQLgZevSROmhQByehA5Cy0Wi4+d2H/9elj07adN/4UO3503dZW9IR1b43yc3pA3+kd7Mq2pVSG3E9yMemxoaKjm0tTo2oEP4xZYM5hKupNX/nVOmjQJm6d8dNzduzdPnj40wHeolZVNVRU7Li7W0dEJHl5qn1Z2bKnjHBydPDt0unf/NpfLMTVl9undP3D6XLSLglRPeSxv3rzJZrNnzpyp8Xqgxri6uP++fivaVaDPb1KAdt91qPwCiUAgKCoq0ngxEASBBreWw4YNg335QBBalMeSRqPRaDSNFwNBEGhwJzYlJWXrVngMA0HoUB5LAoGQnZ2t8WIgCAINxtLd3X3z5s0aLwaCINBgLEkkkp2dncaLgSAINDZIe0CANl8XgiAsazCWlZWVLJaKH1eBIKgpGozlsWPH4DUSCEJFg3c5Ozg4aKB5kgFODlraRQDUdEwbA4DD3EMITBsDHAFzVambiaU+AMqXusGtZWhoaEREhDqrAgAAmrEe68O3nwGHVELAk7IKhYY0zD1xIpfJK0vEaFehURKxvDCTz2CSlL7bYCzpdPqbN2/UWRgAAJjb6be4Px2oqarKxG29sDgWm72bYU2lBO0qNKqyVNSuc4MHiQ3GctiwYYsXL1ZbVZ/QjPVsnA0eXy1Vd0MQAOBeaHHf8Uy0q1Ciy0Dj9ITq8o86tN8Ue6G4z1jTht5V3juBhr19xsl6xfPqb2psQSIQG/ylgL4PnyOpZonvh5bM+dORTMHcHixCLlOc2/Kh0wATpo0Bw1T5rp0W4HOlHJbowaXSGevsKQwl/RIgGotlUFDQ6tWrnZ2d1Vbkf/Le8l89qi7NExKIcKdWlczt9avKJE4dKX3HM/F4rK/bhFvsrJc8qhGRVVh/GB81kclleDxBM+vFzFa/ulzcxpPSZwxTT7+xzU9jsdy2bVu7du38/PzUU6RyIkGTOtuFmkihUBgYYqvnnm+SiD4f8Em9Jk+efPjwYTMzMw20pZArDChN+i4ai6VcLpfL5bCrGEiLHT9+PCAggErF1pmwxmKpUChEIhEcCxWCNKzRHVwcLigoKC0tTYP1QJBG3blzp7a2Fu0q6vvGac8xY8akpKRoqhgI0rTg4GA+n492FfVh4gIJBKHl7t27/fv3x8JwQJ/7dizfvXtnb2+PtWNiCNJi3752X1BQsG3bNo0UA0EaJRQKw8PD0a5CiW/Hcvjw4ebm5iKRhi7vQpDGvH79+sGDB2hXoQQ8toR0V35+vlAodHNzQ7uQ+pp6AyrsnxLSPo6OjhjMZDNiaWdnFxwcrOZiIEhzampqMNu9Y1NvrJsxY0ZxcbFcLsfj4RMekDY4f/68ra0t2lUo14xjS4FAUFNTY25uruaSIEgTUlNT27dvj4zhizXN2PSRyeSjR49GRkaqsx4I0hBPT09sZrJ5sQQAbNiwgc1mw4slUKtWWFg4btw4tKtoDLxAAumcw4cPT5o0ycLCAu1CGvQ9sbx//35SUtJvv/2mnpIgSNd959by0aNHRCKxT58+aigJgtQlOjq6urra398f7UK+oUU7se/evWvfvr1K64EgdXnx4kVxcfGYMWPQLuTbWhTLmJgYuVw+bNgwlZYEQar36tWrTp06oV1FU7Xo3oAhQ4Z8/PhRdcVAkFps3LhRIGhNndC29JadefPmAQCuXbumonogSJXEYrFMJuvevXuvXr3QrqUZVHMnnYODQ1BQkEpmBUGqcvPmzVu3bhEIhNGjR6NdS/OoJpZdunRZvXo1AKC0FA5bAGFCRkZGYmLi+PHj0S7ke6j4doLY2NjXr1///PPPKpwnBDXLxYsXR4wYIZVKmUwsDrjSFCrumnngwIHFxcVFRUVMJhNr3RZBuuDgwYNCodDIyAjtQlpELTffSSSSgoKC6OjohQsXqnzmEPS17Ozs169fT5o0qaKiovVuJOuo5eFJPT29tm3b6uvrX7hwQR3zh6A6CoWitLR03bp1nTt3BgBoQSbVfqs6j8ejUqmHDx+eOnWqiYmJ+hqCdBCLxTpw4MCaNWsUCgWN1uAQrq2RersaQHqX7dmz5/z589XaEKRTOBwO0iF6z549qVSqlmVS0w92PX78uLCwMCAgQGMtQlqmoqJiw4YNU6ZM8fX1RbsWNdJoxzx9+/YtKSmBtwRB3wHp0DU3N3fWrFnanUl0HoMWCoUGBgarV6/28fHB+EPiEOpkMhmBQBgwYICfn9+iRYvQLkdDUOjGDhkw87fffnv9+rVYLObxeJqvAcK+7OzsNWvWIM9C3Lx5U3cyiU4sESYmJhs2bCCRSFKp1MfHJyYmBq1KIEwRiUSZmZnIWFrDhg1zdHQEABgaGqJdl0ah3+mrkZER8twmAODp06cfPnxAuyIINfHx8QMGDEDGgV24cOGgQYPQrggd6McS6eoSeZba2Nj4559/fvz4MdoVQZojlUrPnTt38OBBAIClpeXTp09b0fPKaoLFnu9KS0stLS137NhhbW09ffp02I+7tkpJSenSpUtiYmJCQsL06dO14wYdlcDiX7ylpSUAYP78+Ww2Oz09HQDw5s0btIuCVInL5fbv3z8+Ph6522TZsmUwk5/D4tbya6tWrSosLLx06ZJUKiUSVfzUC6QxV69eDQsLu3z5MnL6HQ4x3pDWEUsAQFFRkY2NTUZGxuHDhxctWuTq6op2RVCTSKXSGzdutGvXzsPD4+zZs/3790dOrkKNaDWxrPPkyZOqqqrRo0dHR0dbWlp6eXmhXRGk3Pv3711dXU+cOFFaWrp06VIGg4F2Ra2HotVKSUn54Ycf4uLiFApFUVER2uVA/0lNTe3Ro8f169fRLqS1an1by3oEAgGZTN6wYUNWVlZISAhmx2DSelKpdPv27YWFhUePHi0pKTEzM4NnAb5bq49lnczMTCcnJyKR+OOPPw4dOtTPzw/tinRCWlpabGzs0qVLeTxeTEzMiBEjkJsroZbA4gWS7+Pi4oL8PC9durSsrAy5rBIeHt5Iv70TJ07UbI2tSURERCPvpqam5ufnAwBOnjyJjKlMpVInTJgAM6kS2rO1/BqHwzly5IiBgcHy5cvT09NtbGzodPrnE3Tp0qVdu3bnzp2DvYHVc+HChZCQELlcfufOnc9fR3rK2b9/f0pKyrZt26ysrNCrUauhfXCrIY8fP/b19X3y5IlCoRAIBAqFYty4cV27du3atevkyZM5HA7aBWLIxYsXBw8e3LVr1y5dutS9+Pbt27Fjx169elWhUFRXV6NaoPbT5q3l11gslpmZ2erVq0UiUVpaGpfLRV63t7c/c+ZMvW1pQ4S1stxUfnGeqLJELOBJDQyJVSxsDY+NJ+DweECmEMlUgpmdfpv2ZNt2TX0C4/LlyydPnqyqqkJ+sufOnVtVVbVu3brMzExDQ0NkfxVSN92KZZ0nT54sWbLk87tt7e3tz58/T6FQGvlU9mveq8fcikIhzcyQyiQTiASiPoFIIuIwdoSOA0AmlUtEMqlYJhPLOKU8AVfk1p3RfYgR1aixs6Ph4eHHjx9HMokgk8kRERFmZmYaKRz6REdjOXbs2OLi4nov2tnZhYSEKE3mx8zaxxFsOY5gYsegGLe+sxoyqZxXISjLYjt5Unz9mEQ9JT8kV69ePXr06OeZRDaYL1680GClENDdWPbt21cgECAPeeLxeCKRyGAwiESivb39kSNHPp9SIQd3L1SUF4lN7RmGRq0vkPWwCziCqtreY5lO7esvy9ixY2UymVAorKmpkUqlyJoBADx//hylYnWXjsZyyJAhdDrd2NjYzMzM0dHRycmJyWQymUw7O7t6U149UKwg6jMdW3fn+fXkJRd1HcTo2OeLu+FqampKS0tZLFZ5eXlOTk5xcXFFRQWHwxGJRLdv30avWF2ko7Fson9PlCqIhgzLxg44W6mC16V9Rhm39dStzjhaC4ydrMCSqweLFHpkrcwkAMDey/LZ7eqsl7B/MyyCsVTu0dUKQDRgWGjzA4G2nhaPrlZUV4jRLgSqD8ZSiY+ZtUV5YlMHrTqeVMqus+Xtf8rRrgKqD8ZSicfX2Ea22p9JAIC+oR6OSHz7lIN2IdAXYCzry3lTowAEQ4au3CXLdDKJj2KjXQX0BRjL+l4/rjG2x+Jz9BXsj6t+7/nyzV3VzpZIIjAsKBnPuaqdLdQSMJZfENbKyj8KKa3/toFmIRuRM1P4aFcB/QfG8gu5qTy6uc5dyqOZGX58D2OJIbBbhy+UfxRTTNUVy6dJVx89ucDhlpsYW3fuONS3T6Cenn5R8fuDJ+fPnbH31t3DxaWZxkZWo4Yu7uDeD/kIj18VeWvv24zHekT9tm26qqkwPB5nZk8tyRNYtSGrqQmoWWAsv1BRJDYwVcuf5t3YE4+eXPDp5W9h1qa84sPDuJCKio/T/DYBACQSUcjldeNHrTQ2soqOPX4h/Pd1KyMpFCOJVHzszBI2+2O/PtNNjK2eJl5VR2EIqUTO58jUN3+oWWAsv1BbI6Vaq76TLg6Xdf/xmel+f3bsMBB5hUFjXo3aMW7kCuS/40et7OQ5BAAwcsjC4COzcvJfdvQY8CQhvKQ068dZB1ycewAAHO08d+73V3ltCIIekc+VqmnmUHPBWH6BRCboGag+llk5STKZNPTKhtArG/7/mgIAwKn5dCmfpPdpE21sZAUA4NawAABp6Y+sLJyRTAIA8Hg1duqnRyaKhXBriRUwll+o5UplYjmBqOIAcGsqAABzA/cYMcw/f93UxLa0LOfzV4gEPQCAXC4DAFRzSm2sNNR5vFggw8O+PDEDxvILhjSCVCwjGeqpdrZk8qfuSMzNmtHPP5VizONXNWFCFZBLpRSduYMC++AFki9QGESpSPX7cu2cuuFwuPjEsLpXROIGu8msY2Pl+rHoXTlLE+PwSsUyCh1uLbECxvILVm30BTWq7y+LaWrn4+3/LiPudMjKxBf/3nt4evveSYXFGY1/akDfmTgc/vDpBbGPzz5/eTPixt8qL6xObbXY3E63bqLAMrgT+4W2ntQ3cSXA2UTlcx47YrkRwzw+Ifx9dgKdxuzQ3pdBN2/8I0xT2/kz992I3h8de8KIYeHp7puZnajywgAA/CqhsQVJnwy3llgBeyeo78wfH6zaW+hTVHx4iWVlWZXOHsSug4zRLgT6BG4t6/PsQ8vJ4Js7NfhgV/T943EJl79+3dbKrbBE+X7pkvknLczbqKrCWzGHnyYpubWAbEATCGuUfmT5grNM0wa7eBXWCN27w/7RMQRuLZU4sibHpa89gaj8wLu2lisUKelrA4drcGUy6OYEgsp+Afm1HJFIyS2sCgXA4ZR/pJEC2B84pkyZrx/sCRZDYCyVeBNX/e6FyNKViXYhmpAWk7dwV1s8voFAQ2iAZ2KV6NjXSI8greUK0S5E7cqzKwZMMYOZxBoYS+UmLbH58LxULpWjXYgaVRZUm1niPbyx+My3joOxbNDM3x2KUs6slbwAAAEoSURBVEvRrkJdKvKr6XTZgMnwkBKLYCwbRKET/ZZap93NE/K0rctGdn6VHl48eNo3LpxCaIGnfL5BoVCc31JANaeb2DVpmD2ME9dKOKUcG3ti7zGmaNcCNQjGskniI9lvn3HMnU2MbWho1/KdpFI5K7tSUC3w9WM6eWpzt9RaAMayqQQ82eOIiqJsgT5Nn2pGoZoaqPz5L3UQCSQ1ZbX8Sr6BId69O7WjDzzB0wrAWDaPsFaW/47//gWfz5FWl4tJZALdnCziSdCu6ws4PJCK5GKhTCyQmTuQze3023Wi2LSF/fS0GjCW308qlvO5stoamVyGsXWIA3r6OAqdSKHDmytbJRhLCMIceIEEgjAHxhKCMAfGEoIwB8YSgjAHxhKCMAfGEoIw53/f3ohJ2E1W/QAAAABJRU5ErkJggg==",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"graph_builder = StateGraph(DataState)\n",
"\n",
"# Nodes\n",
"graph_builder.add_node(\"chatbot_healthassistant\", chatbot_with_tools)\n",
"graph_builder.add_node(\"patient\", human_node)\n",
"graph_builder.add_node(\"documenting\", data_node)\n",
"\n",
"# Chatbot -> {ordering, tools, human, END}\n",
"graph_builder.add_conditional_edges(\"chatbot_healthassistant\", maybe_route_to_tools)\n",
"# Human -> {chatbot, END}\n",
"graph_builder.add_conditional_edges(\"patient\", maybe_exit_human_node)\n",
"# TestCase_Paintrek\n",
"# Tools (both kinds) always route back to chat afterwards.\n",
"graph_builder.add_edge(\"documenting\", \"chatbot_healthassistant\")\n",
"\n",
"graph_builder.add_edge(START, \"chatbot_healthassistant\")\n",
"graph_with_order_tools = graph_builder.compile()\n",
"\n",
"Image(graph_with_order_tools.get_graph().draw_mermaid_png())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:38.185616Z",
"iopub.status.busy": "2025-01-29T20:09:38.185131Z",
"iopub.status.idle": "2025-01-29T20:10:08.474591Z",
"shell.execute_reply": "2025-01-29T20:10:08.472926Z",
"shell.execute_reply.started": "2025-01-29T20:09:38.185577Z"
},
"id": "NCRSgaBUfIHF",
"trusted": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing the chatbot graph...\n",
"Model: Welcome to the Paintrek world. I am a health assistant, an interactive clinical recording system. I will ask you questions about your pain and related symptoms and record your responses. I will then store this information securely. At any time, you can type `q` to quit.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Great! First, I need some basic information for your medical record. Please tell me your full name, date of birth, gender, and contact number. Also, please provide an emergency contact name and number.\n",
"Model: Please provide your full name, date of birth, gender, and contact number. Also, please provide an emergency contact name and number. This information is essential to begin your intake.\n",
"Model: Thank you. Now, can you describe your main symptom or reason for seeking medical attention today? And how long have you been experiencing this?\n",
"Model: Okay. Let's move on to a pain assessment. To help me understand your headache, can you tell me where exactly you feel the pain? Is it on the left, right, or both sides? And on a scale of 0 to 10, with 0 being no pain and 10 being the worst pain imaginable, how intense is the pain right now?\n",
"\n",
"We'll use a body map: head, arms, hands, trunk, legs, feet. Please indicate the location(s) of your pain.\n",
"Model: Please describe the location of your headache (e.g., forehead, temples, back of the head). Is it on the left, right, or both sides? And what is the pain intensity on a scale of 0-10? We need this information to continue with the assessment.\n",
"Model: Okay, so you're experiencing pain on the left side of your head, with an intensity of 2 out of 10. Can you describe the characteristics of the pain? Is it sharp, dull, throbbing, aching, or something else? When did the pain start? Does it radiate to any other areas? Are there any triggers that make it worse or better? Are there any other symptoms associated with the headache, such as nausea, vomiting, or visual disturbances?\n",
"Model: To continue, please describe the characteristics of your headache (sharp, dull, throbbing, etc.), when it started, if it radiates, any triggers, and any associated symptoms (nausea, vomiting, visual disturbances, etc.). This information is crucial for a proper assessment.\n",
"Model: Understood. Let's summarize what we have so far:\n",
"\n",
"* **Patient:** Frank\n",
"* **DOB:** 1986-01-01\n",
"* **Main Symptom:** Headache on the left side of the head, sharp pain, intensity 2/10.\n",
"* **Duration:** 2 days\n",
"* **Triggers:** Cold temperatures seem to worsen the pain.\n",
"* **Associated Symptoms:** None reported.\n",
"\n",
"Is this information correct so far?\n",
"Model: Great. Now, let's proceed with your medical history. Do you have any existing medical conditions? If so, please list them and when they were first diagnosed. Do you have any known allergies? Have you had any surgeries in the past? If so, please specify the dates and types of surgeries. What medications are you currently taking, including over-the-counter medications?\n"
]
},
{
"ename": "NotImplementedError",
"evalue": "Unknown tool call: add_to_data",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[6], line 11\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# Ensure messages print immediately\u001b[39;00m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecuting the chatbot graph...\u001b[39m\u001b[38;5;124m\"\u001b[39m, flush\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m---> 11\u001b[0m state \u001b[38;5;241m=\u001b[39m graph_with_order_tools\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: []}, config)\n\u001b[1;32m 12\u001b[0m display(state) \u001b[38;5;66;03m# Ensures state is shown in Jupyter\u001b[39;00m\n\u001b[1;32m 13\u001b[0m sys\u001b[38;5;241m.\u001b[39mstdout\u001b[38;5;241m.\u001b[39mflush()\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1961\u001b[0m, in \u001b[0;36mPregel.invoke\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, **kwargs)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1960\u001b[0m chunks \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m 1962\u001b[0m \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m 1963\u001b[0m config,\n\u001b[1;32m 1964\u001b[0m stream_mode\u001b[38;5;241m=\u001b[39mstream_mode,\n\u001b[1;32m 1965\u001b[0m output_keys\u001b[38;5;241m=\u001b[39moutput_keys,\n\u001b[1;32m 1966\u001b[0m interrupt_before\u001b[38;5;241m=\u001b[39minterrupt_before,\n\u001b[1;32m 1967\u001b[0m interrupt_after\u001b[38;5;241m=\u001b[39minterrupt_after,\n\u001b[1;32m 1968\u001b[0m debug\u001b[38;5;241m=\u001b[39mdebug,\n\u001b[1;32m 1969\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 1970\u001b[0m ):\n\u001b[1;32m 1971\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m stream_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvalues\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1972\u001b[0m latest \u001b[38;5;241m=\u001b[39m chunk\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1670\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, subgraphs)\u001b[0m\n\u001b[1;32m 1664\u001b[0m \u001b[38;5;66;03m# Similarly to Bulk Synchronous Parallel / Pregel model\u001b[39;00m\n\u001b[1;32m 1665\u001b[0m \u001b[38;5;66;03m# computation proceeds in steps, while there are channel updates.\u001b[39;00m\n\u001b[1;32m 1666\u001b[0m \u001b[38;5;66;03m# Channel updates from step N are only visible in step N+1\u001b[39;00m\n\u001b[1;32m 1667\u001b[0m \u001b[38;5;66;03m# channels are guaranteed to be immutable for the duration of the step,\u001b[39;00m\n\u001b[1;32m 1668\u001b[0m \u001b[38;5;66;03m# with channel updates applied only at the transition between steps.\u001b[39;00m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m loop\u001b[38;5;241m.\u001b[39mtick(input_keys\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_channels):\n\u001b[0;32m-> 1670\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m runner\u001b[38;5;241m.\u001b[39mtick(\n\u001b[1;32m 1671\u001b[0m loop\u001b[38;5;241m.\u001b[39mtasks\u001b[38;5;241m.\u001b[39mvalues(),\n\u001b[1;32m 1672\u001b[0m timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_timeout,\n\u001b[1;32m 1673\u001b[0m retry_policy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_policy,\n\u001b[1;32m 1674\u001b[0m get_waiter\u001b[38;5;241m=\u001b[39mget_waiter,\n\u001b[1;32m 1675\u001b[0m ):\n\u001b[1;32m 1676\u001b[0m \u001b[38;5;66;03m# emit output\u001b[39;00m\n\u001b[1;32m 1677\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m output()\n\u001b[1;32m 1678\u001b[0m \u001b[38;5;66;03m# emit output\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/runner.py:230\u001b[0m, in \u001b[0;36mPregelRunner.tick\u001b[0;34m(self, tasks, reraise, timeout, retry_policy, get_waiter)\u001b[0m\n\u001b[1;32m 228\u001b[0m t \u001b[38;5;241m=\u001b[39m tasks[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 229\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 230\u001b[0m run_with_retry(\n\u001b[1;32m 231\u001b[0m t,\n\u001b[1;32m 232\u001b[0m retry_policy,\n\u001b[1;32m 233\u001b[0m configurable\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m 234\u001b[0m CONFIG_KEY_SEND: partial(writer, t),\n\u001b[1;32m 235\u001b[0m CONFIG_KEY_CALL: partial(call, t),\n\u001b[1;32m 236\u001b[0m },\n\u001b[1;32m 237\u001b[0m )\n\u001b[1;32m 238\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcommit(t, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/retry.py:40\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy, configurable)\u001b[0m\n\u001b[1;32m 38\u001b[0m task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m 39\u001b[0m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 40\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m task\u001b[38;5;241m.\u001b[39mproc\u001b[38;5;241m.\u001b[39minvoke(task\u001b[38;5;241m.\u001b[39minput, config)\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ParentCommand \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 42\u001b[0m ns: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m config[CONF][CONFIG_KEY_CHECKPOINT_NS]\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:462\u001b[0m, in \u001b[0;36mRunnableSeq.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 458\u001b[0m config \u001b[38;5;241m=\u001b[39m patch_config(\n\u001b[1;32m 459\u001b[0m config, callbacks\u001b[38;5;241m=\u001b[39mrun_manager\u001b[38;5;241m.\u001b[39mget_child(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mseq:step:\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;250m \u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m1\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 460\u001b[0m )\n\u001b[1;32m 461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 462\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 463\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 464\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:226\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 225\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, config)\n\u001b[0;32m--> 226\u001b[0m ret \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 227\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m 228\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
"File \u001b[0;32m/media/frank-elite/Application/PythonProj/LangGraphExampleResume/modules/tools.py:136\u001b[0m, in \u001b[0;36mdata_node\u001b[0;34m(state)\u001b[0m\n\u001b[1;32m 132\u001b[0m data_saved \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 133\u001b[0m \u001b[38;5;66;03m# response = randint(1, 5) # ETA in minutes\u001b[39;00m\n\u001b[1;32m 134\u001b[0m \n\u001b[1;32m 135\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUnknown tool call: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtool_call[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mname\u001b[39m\u001b[38;5;124m\"\u001b[39m]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m 138\u001b[0m \u001b[38;5;66;03m# Record the tool results as tool messages.\u001b[39;00m\n\u001b[1;32m 139\u001b[0m outbound_msgs\u001b[38;5;241m.\u001b[39mappend(\n\u001b[1;32m 140\u001b[0m ToolMessage(\n\u001b[1;32m 141\u001b[0m content\u001b[38;5;241m=\u001b[39mresponse,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 144\u001b[0m )\n\u001b[1;32m 145\u001b[0m )\n",
"\u001b[0;31mNotImplementedError\u001b[0m: Unknown tool call: add_to_data",
"\u001b[0mDuring task with name 'documenting' and id '88c3029c-c38b-1204-cc25-5e2214e0b1ab'"
]
}
],
"source": [
"# The default recursion limit for traversing nodes is 25 - setting it higher\n",
"# means you can try a more complex order with multiple steps and round-trips.\n",
"config = {\"recursion_limit\": 500}\n",
"\n",
"# Uncomment this line to execute the graph:\n",
"# Clear output before running new states\n",
"clear_output(wait=True)\n",
"\n",
"# Ensure messages print immediately\n",
"print(\"Executing the chatbot graph...\", flush=True)\n",
"state = graph_with_order_tools.invoke({\"messages\": []}, config)\n",
"display(state) # Ensures state is shown in Jupyter\n",
"sys.stdout.flush()\n",
"\n",
"# pprint(state)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [
{
"data": {
"text/plain": [
"{'ID': {'name': 'Frank',\n",
" 'DOB': '1986-01-01',\n",
" 'gender': 'male',\n",
" 'contact': '12345',\n",
" 'emergency_contact': 'Zoe, 67890'},\n",
" 'symptom': {'main_symptom': 'headache',\n",
" 'length': '',\n",
" 'symptom_length': 'a week'}}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state[\"data\"]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "day-3-building-an-agent-with-langgraph.ipynb",
"toc_visible": true
},
"kaggle": {
"accelerator": "none",
"dataSources": [],
"dockerImageVersionId": 30786,
"isGpuEnabled": false,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "paintrekbot",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|