File size: 71,780 Bytes
f29a3a5
 
 
 
7828fde
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
 
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
 
 
 
 
 
 
 
 
 
 
f29a3a5
 
 
 
3e595a5
f29a3a5
 
 
 
 
3e595a5
f29a3a5
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e595a5
 
f29a3a5
 
 
3e595a5
 
f29a3a5
 
 
 
 
 
3e595a5
 
 
 
f29a3a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.440091Z",
     "iopub.status.busy": "2025-01-29T20:09:11.439766Z",
     "iopub.status.idle": "2025-01-29T20:09:11.751153Z",
     "shell.execute_reply": "2025-01-29T20:09:11.750263Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.440060Z"
    },
    "id": "xaiioUQni_ga",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "from typing import Annotated, Dict, Any\n",
    "from typing_extensions import TypedDict\n",
    "from datetime import date\n",
    "\n",
    "from langgraph.graph.message import add_messages\n",
    "from langgraph.graph import StateGraph, START, END\n",
    "from langchain_google_genai import ChatGoogleGenerativeAI\n",
    "from langchain_openai import ChatOpenAI\n",
    "from langchain_ollama import ChatOllama\n",
    "\n",
    "from IPython.display import Image, display\n",
    "from pprint import pprint\n",
    "from langchain_core.messages.ai import AIMessage\n",
    "from typing import Literal\n",
    "from langchain_core.tools import tool\n",
    "from langgraph.prebuilt import ToolNode"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.753044Z",
     "iopub.status.busy": "2025-01-29T20:09:11.752582Z",
     "iopub.status.idle": "2025-01-29T20:09:11.760099Z",
     "shell.execute_reply": "2025-01-29T20:09:11.759040Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.752997Z"
    },
    "id": "2RJQRlfVjqkJ",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "# setup_openai_api()\n",
    "# llm = ChatOpenAI(temperature=0)\n",
    "\n",
    "# setup_ollama_api()\n",
    "# llm = ChatOllama(model=\"llama3.2:latest\", temperature=0)\n",
    "\n",
    "\"\"\"llm = ChatOpenAI(\n",
    "    api_key=\"ollama\",\n",
    "    model=\"llama3.2:latest\",\n",
    "    base_url=\"http://141.211.127.171/\",\n",
    ")\"\"\"\n",
    "\n",
    "setup_google_api()\n",
    "llm = ChatGoogleGenerativeAI(model=\"gemini-1.5-flash-latest\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "AIMessage(content='Hello there! How can I help you today?', additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': []}, id='run-eb83e576-ad78-40ef-86ef-4133db5ca191-0', usage_metadata={'input_tokens': 1, 'output_tokens': 11, 'total_tokens': 12, 'input_token_details': {'cache_read': 0}})"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "llm.invoke(\"Hello\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.763927Z",
     "iopub.status.busy": "2025-01-29T20:09:11.763466Z",
     "iopub.status.idle": "2025-01-29T20:09:11.779944Z",
     "shell.execute_reply": "2025-01-29T20:09:11.778675Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.763894Z"
    },
    "id": "2RJQRlfVjqkJ",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "class PainLevels(TypedDict):\n",
    "    left_head: int\n",
    "    right_head: int\n",
    "    left_arm: int\n",
    "    left_hand: int\n",
    "    right_arm: int\n",
    "    right_hand: int\n",
    "    left_body_trunk: int\n",
    "    right_body_trunk: int\n",
    "    left_leg: int\n",
    "    left_foot: int\n",
    "    right_leg: int\n",
    "    right_foot: int\n",
    "\n",
    "class Surgery(TypedDict):\n",
    "    surgery_name: str\n",
    "    time: date\n",
    "\n",
    "class PatientID(TypedDict):\n",
    "    name: str\n",
    "    DOB: date\n",
    "    gender: str\n",
    "    contact: str\n",
    "    emergency_contact: str\n",
    "\n",
    "class MainSymptom(TypedDict):\n",
    "    main_symptom: str\n",
    "    length: str\n",
    "\n",
    "class Pain(TypedDict):\n",
    "    painlevel: PainLevels\n",
    "    pain_description: str\n",
    "    start_time: date\n",
    "    radiation: bool\n",
    "    triggers: str\n",
    "    symptom: str\n",
    "\n",
    "class MedicalHistory(TypedDict):\n",
    "    medical_condition: str\n",
    "    first_time: date\n",
    "    surgery_history: list[Surgery]\n",
    "    medication: str\n",
    "    allergy: str\n",
    "\n",
    "class FamilyHistory(TypedDict):\n",
    "    family_history: str\n",
    "\n",
    "class SocialHistory(TypedDict):\n",
    "    occupation: str\n",
    "    smoke: bool\n",
    "    alcohol: bool\n",
    "    drug: bool\n",
    "    support_system: str\n",
    "    living_condition: str\n",
    "\n",
    "class ReviewSystem(TypedDict):\n",
    "    weight_change: str\n",
    "    fever: bool\n",
    "    chill: bool\n",
    "    night_sweats: bool\n",
    "    sleep: str\n",
    "    gastrointestinal: str\n",
    "    urinary: str\n",
    "\n",
    "class PainManagement(TypedDict):\n",
    "    pain_medication: str\n",
    "    specialist: bool\n",
    "    other_therapy: str\n",
    "    effectiveness: bool\n",
    "\n",
    "class Functional(TypedDict):\n",
    "    life_quality: str\n",
    "    limit_activity: str\n",
    "    mood: str\n",
    "\n",
    "class Plan(TypedDict):\n",
    "    goal: str\n",
    "    expectation: str\n",
    "    alternative_treatment_illness: str\n",
    "\n",
    "class PatientData(TypedDict):\n",
    "    ID: PatientID\n",
    "    main: MainSymptom\n",
    "    \"\"\"pain: Pain\n",
    "    medical_hist: MedicalHistory\n",
    "    family_hist: FamilyHistory\n",
    "    social_hist: SocialHistory\n",
    "    review_system: ReviewSystem\n",
    "    pain_manage: PainManagement\n",
    "    functional: Functional\n",
    "    plan: Plan\"\"\"\n",
    "\n",
    "class DataState(TypedDict):\n",
    "    \"\"\"State representing the patient's data status and conversation.\"\"\"\n",
    "    messages: Annotated[list, add_messages]\n",
    "    data: Dict[str, PatientData]\n",
    "    finished: bool"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.781576Z",
     "iopub.status.busy": "2025-01-29T20:09:11.781212Z",
     "iopub.status.idle": "2025-01-29T20:09:11.800825Z",
     "shell.execute_reply": "2025-01-29T20:09:11.799561Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.781544Z"
    },
    "id": "2RJQRlfVjqkJ",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "# The system instruction defines how the chatbot is expected to behave and includes\n",
    "# rules for when to call different functions, as well as rules for the conversation, such\n",
    "# as tone and what is permitted for discussion.\n",
    "MEDICAL_INTAKE_SYSINT = (\n",
    "    \"system\",\n",
    "    \"\"\"You are MedAssist, an intelligent medical intake system designed to gather comprehensive patient information. You guide patients through a structured data collection process while maintaining a supportive and professional demeanor.\n",
    "   \n",
    "   Before collecting any data, always use get_empty_datadict to create a new empty data dictionary for a new patient. Then use the following steps to collect data from a patient.\n",
    "   \n",
    "   Primary Data Collection Areas:\n",
    "   1. Patient Identification\n",
    "      - Basic information (name, DOB, gender, contact)\n",
    "      - Emergency contact information\n",
    "\n",
    "   2. Main Symptom Assessment\n",
    "      - Primary complaint\n",
    "      - Duration of symptoms\n",
    "\n",
    "   3. Pain Assessment\n",
    "      - Pain location using body mapping (head, arms, hands, trunk, legs, feet)\n",
    "      - Pain intensity (0-10 scale for each location)\n",
    "      - Pain characteristics and patterns\n",
    "      - Onset time\n",
    "      - Radiation patterns\n",
    "      - Triggering factors\n",
    "      - Associated symptoms\n",
    "\n",
    "   4. Medical History\n",
    "      - Existing medical conditions\n",
    "      - First occurrence date\n",
    "      - Surgical history with dates\n",
    "      - Current medications\n",
    "      - Allergies\n",
    "\n",
    "   5. Background Information\n",
    "      - Family medical history\n",
    "      - Social history (occupation, lifestyle factors)\n",
    "      - Living conditions and support system\n",
    "\n",
    "   6. System Review\n",
    "      - Recent health changes\n",
    "      - Sleep patterns\n",
    "      - Gastrointestinal and urinary function\n",
    "      - Constitutional symptoms (fever, chills, night sweats)\n",
    "\n",
    "   7. Pain Management History\n",
    "      - Current pain medications\n",
    "      - Specialist consultations\n",
    "      - Alternative therapies\n",
    "      - Treatment effectiveness\n",
    "\n",
    "   8. Functional Assessment\n",
    "      - Impact on quality of life\n",
    "      - Activity limitations\n",
    "      - Mood and emotional state\n",
    "\n",
    "   9. Treatment Planning\n",
    "      - Treatment goals\n",
    "      - Patient expectations\n",
    "      - Alternative treatment considerations\n",
    "\n",
    "   Data Management Commands:\n",
    "   - Use get_data to review current information\n",
    "   - Use add_to_data to append new information\n",
    "   - Use clear_data to reset the current session\n",
    "   - Use confirm_data to verify information with the patient\n",
    "   - Use insert_data to finalize the record\n",
    "\n",
    "   Guidelines:\n",
    "   1. Always introduce yourself and explain the intake process\n",
    "   2. Collect information systematically but adapt to the patient's natural flow of conversation\n",
    "   3. If patient starts with a specific concern, begin there but ensure all sections are eventually completed\n",
    "   4. Use conversational prompts to gather missing information\n",
    "   5. Validate pain levels on a 0-10 scale for each body location\n",
    "   6. Regularly summarize collected information for patient verification\n",
    "   7. Show empathy while maintaining professional boundaries\n",
    "   8. Focus on medical data collection while acknowledging patient concerns\n",
    "   9. Always confirm complete data set before finalizing\n",
    "   10. Thank the patient and provide clear closure when finished\n",
    "\n",
    "   Remember:\n",
    "   - Maintain medical privacy and confidentiality\n",
    "   - Stay within scope of data collection\n",
    "   - Be patient and clear in communication\n",
    "   - Double-check all information before final submission\n",
    "   - Adapt language to patient's comprehension level\n",
    "   - Document 'unknown' or 'not applicable' when appropriate\n",
    "\n",
    "   Always confirm_data with the patient before calling save_data, and address any corrections needed. Once save_data is complete, provide a summary and conclude the session.\"\"\"\n",
    ")\n",
    "\n",
    "# This is the message with which the system opens the conversation.\n",
    "WELCOME_MSG = \"Welcome to the Paintrek world. I am a health assistant, an interactive clinical recording system. I will ask you questions about your pain and related symptoms and record your responses.  I will then store this information securely. At any time, you can type `q` to quit.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.828125Z",
     "iopub.status.busy": "2025-01-29T20:09:11.827744Z",
     "iopub.status.idle": "2025-01-29T20:09:11.835672Z",
     "shell.execute_reply": "2025-01-29T20:09:11.834403Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.828093Z"
    },
    "id": "SWXwd1ITUSPF",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "def human_node(state: DataState) -> DataState:\n",
    "    \"\"\"Display the last model message to the user, and receive the user's input.\"\"\"\n",
    "    last_msg = state[\"messages\"][-1]\n",
    "    print(\"Model:\", last_msg.content)\n",
    "\n",
    "    user_input = input(\"User: \")\n",
    "\n",
    "    # If it looks like the user is trying to quit, flag the conversation\n",
    "    # as over.\n",
    "    if user_input in {\"q\", \"quit\", \"exit\", \"goodbye\"}:\n",
    "        state[\"finished\"] = True\n",
    "\n",
    "    return state | {\"messages\": [(\"user\", user_input)]}\n",
    "\n",
    "\n",
    "def maybe_exit_human_node(state: DataState) -> Literal[\"chatbot_healthassistant\", \"__end__\"]:\n",
    "    \"\"\"Route to the chatbot, unless it looks like the user is exiting.\"\"\"\n",
    "    if state.get(\"finished\", False):\n",
    "        return END\n",
    "    else:\n",
    "        return \"chatbot_healthassistant\"\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "@tool\n",
    "def get_empty_datadict(state: DataState) -> DataState:\n",
    "    \"\"\"Before collecting data, get a empty data dictionary for a new patient\"\"\"\n",
    "    # Note that this is just hard-coded text, but you could connect this to a live stock\n",
    "    # database, or you could use Gemini's multi-modal capabilities and take live photos of\n",
    "    # your cafe's chalk menu or the products on the counter and assmble them into an input.\n",
    "    state[\"data\"]= {\n",
    "        \"patient_1\": {\n",
    "            \"data_1\": {  # Placeholder patient ID, can be replaced dynamically\n",
    "                \"ID\": {\n",
    "                    \"name\": \"\",\n",
    "                    \"DOB\": date(1900, 1, 1),  # Default placeholder date\n",
    "                    \"gender\": \"\",\n",
    "                    \"contact\": \"\",\n",
    "                    \"emergency_contact\": \"\"\n",
    "                },\n",
    "                \"main\": {\n",
    "                    \"main_symptom\": \"\",\n",
    "                    \"length\": \"\"\n",
    "                }\n",
    "            }\n",
    "        }\n",
    "    }\n",
    "    return state\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.858218Z",
     "iopub.status.busy": "2025-01-29T20:09:11.857696Z",
     "iopub.status.idle": "2025-01-29T20:09:11.903753Z",
     "shell.execute_reply": "2025-01-29T20:09:11.902647Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.858152Z"
    },
    "id": "jqsLovPBQe0I",
    "trusted": true
   },
   "outputs": [],
   "source": [
    "from collections.abc import Iterable\n",
    "from random import randint\n",
    "\n",
    "from langgraph.prebuilt import InjectedState\n",
    "from langchain_core.messages.tool import ToolMessage\n",
    "\n",
    "# These functions have no body; LangGraph does not allow @tools to update\n",
    "# the conversation state, so you will implement a separate node to handle\n",
    "# state updates. Using @tools is still very convenient for defining the tool\n",
    "# schema, so empty functions have been defined that will be bound to the LLM\n",
    "# but their implementation is deferred to the order_node.\n",
    "\n",
    "\n",
    "@tool\n",
    "def patient_id(name: str, DOB: str, gender: str, contact: str, emergency_contact: str) -> str:\n",
    "    \"\"\"Collecting basic patient identification information including:\n",
    "       - Basic information (name, DOB, gender, contact details)\n",
    "       - Emergency contact information\n",
    "\n",
    "    Returns:\n",
    "      The updated data with the patient ID information added.\n",
    "    \"\"\"\n",
    "\n",
    "@tool\n",
    "def symptom(main_symptom: str, length: str) -> str:\n",
    "    \"\"\"Collecting patient's main symptom assessment including:\n",
    "       - Primary symptoms\n",
    "       - Duration of the symptoms\n",
    "\n",
    "    Returns:\n",
    "      The updated data with the patient's symptom information added.\n",
    "    \"\"\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def confirm_data() -> str:\n",
    "    \"\"\"Asks the patient if the data intake is correct.\n",
    "\n",
    "    Returns:\n",
    "      The user's free-text response.\n",
    "    \"\"\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def get_data() -> str:\n",
    "    \"\"\"Returns the users data so far. One item per line.\"\"\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def clear_data():\n",
    "    \"\"\"Removes all items from the user's order.\"\"\"\n",
    "\n",
    "\n",
    "@tool\n",
    "def save_data() -> int:\n",
    "    \"\"\"Send the data into database.\n",
    "\n",
    "    Returns:\n",
    "      The status of data saving, finished.\n",
    "    \"\"\"\n",
    "\n",
    "\n",
    "def data_node(state: DataState) -> DataState:\n",
    "    \"\"\"The ordering node. This is where the dataintake is manipulated.\"\"\"\n",
    "    tool_msg = state.get(\"messages\", [])[-1]\n",
    "    data = state.get(\"data\", [])\n",
    "    outbound_msgs = []\n",
    "    data_saved = False\n",
    "\n",
    "    for tool_call in tool_msg.tool_calls:\n",
    "\n",
    "        if tool_call[\"name\"] == \"patient_id\":\n",
    "\n",
    "            # Each order item is just a string. This is where it assembled as \"drink (modifiers, ...)\".\n",
    "            patient_name = tool_call[\"args\"][\"name\"]\n",
    "            patient_DOB = tool_call[\"args\"][\"DOB\"]\n",
    "            patient_gender = tool_call[\"args\"][\"gender\"]\n",
    "            patient_contact = tool_call[\"args\"][\"contact\"]\n",
    "            patient_emergency_contact = tool_call[\"args\"][\"emergency_contact\"]\n",
    "\n",
    "            data[\"ID\"][\"name\"]=patient_name\n",
    "            data[\"ID\"][\"DOB\"]=patient_DOB\n",
    "            data[\"ID\"][\"gender\"]=patient_gender\n",
    "            data[\"ID\"][\"contact\"]=patient_contact\n",
    "            data[\"ID\"][\"emergency_contact\"]=patient_emergency_contact\n",
    "            \n",
    "            response = \"\\n\".join(data)\n",
    "\n",
    "        if tool_call[\"name\"] == \"symptom\":\n",
    "\n",
    "            # Each order item is just a string. This is where it assembled as \"drink (modifiers, ...)\".\n",
    "            main_symptom = tool_call[\"args\"][\"main_symptom\"]\n",
    "            symptom_length = tool_call[\"args\"][\"length\"]\n",
    "\n",
    "            data[\"symptom\"][\"main_symptom\"]=main_symptom\n",
    "            data[\"symptom\"][\"symptom_length\"]=symptom_length\n",
    "            response = \"\\n\".join(data)\n",
    "\n",
    "        elif tool_call[\"name\"] == \"confirm_data\":\n",
    "\n",
    "            # We could entrust the LLM to do order confirmation, but it is a good practice to\n",
    "            # show the user the exact data that comprises their order so that what they confirm\n",
    "            # precisely matches the order that goes to the kitchen - avoiding hallucination\n",
    "            # or reality skew.\n",
    "\n",
    "            # In a real scenario, this is where you would connect your POS screen to show the\n",
    "            # order to the user.\n",
    "\n",
    "            print(\"Your input data:\")\n",
    "            if not data:\n",
    "                print(\"  (no items)\")\n",
    "\n",
    "            for data in data:\n",
    "                print(f\"  {data}\")\n",
    "\n",
    "            response = input(\"Is this correct? \")\n",
    "\n",
    "        elif tool_call[\"name\"] == \"get_data\":\n",
    "\n",
    "            response = \"\\n\".join(data) if data else \"(no data)\"\n",
    "\n",
    "        elif tool_call[\"name\"] == \"clear_data\":\n",
    "\n",
    "            data.clear()\n",
    "            response = None\n",
    "\n",
    "        elif tool_call[\"name\"] == \"save_data\":\n",
    "\n",
    "            #order_text = \"\\n\".join(order)\n",
    "            print(\"Saving the data!\")\n",
    "            #print(order_text)\n",
    "\n",
    "            # TODO(you!): Implement cafe.\n",
    "            data_saved = True\n",
    "            # response = randint(1, 5)  # ETA in minutes\n",
    "\n",
    "        else:\n",
    "            raise NotImplementedError(f'Unknown tool call: {tool_call[\"name\"]}')\n",
    "\n",
    "        # Record the tool results as tool messages.\n",
    "        outbound_msgs.append(\n",
    "            ToolMessage(\n",
    "                content=response,\n",
    "                name=tool_call[\"name\"],\n",
    "                tool_call_id=tool_call[\"id\"],\n",
    "            )\n",
    "        )\n",
    "\n",
    "    return {\"messages\": outbound_msgs, \"data\": data, \"finished\": data_saved}\n",
    "\n",
    "def chatbot_with_tools(state: DataState) -> DataState:\n",
    "    \"\"\"The chatbot with tools. A simple wrapper around the model's own chat interface.\"\"\"\n",
    "    defaults = {\"data\": {\n",
    "        \"patient_1\": {\n",
    "            \"data_1\": {  # Placeholder patient ID, can be replaced dynamically\n",
    "                \"ID\": {\n",
    "                    \"name\": \"\",\n",
    "                    \"DOB\": date(1900, 1, 1),  # Default placeholder date\n",
    "                    \"gender\": \"\",\n",
    "                    \"contact\": \"\",\n",
    "                    \"emergency_contact\": \"\"\n",
    "                },\n",
    "                \"main\": {\n",
    "                    \"main_symptom\": \"\",\n",
    "                    \"length\": \"\"\n",
    "                }\n",
    "            }\n",
    "        }\n",
    "    }, \"finished\": False}\n",
    "\n",
    "    if state[\"messages\"]:\n",
    "        new_output = llm_with_tools.invoke([MEDICAL_INTAKE_SYSINT] + state[\"messages\"])\n",
    "    else:\n",
    "        new_output = AIMessage(content=WELCOME_MSG)\n",
    "\n",
    "    # Set up some defaults if not already set, then pass through the provided state,\n",
    "    # overriding only the \"messages\" field.\n",
    "    return defaults | state | {\"messages\": [new_output]}\n",
    "\n",
    "\n",
    "def maybe_route_to_tools(state: DataState) -> str:\n",
    "    \"\"\"Route between chat and tool nodes if a tool call is made.\"\"\"\n",
    "    if not (msgs := state.get(\"messages\", [])):\n",
    "        raise ValueError(f\"No messages found when parsing state: {state}\")\n",
    "\n",
    "    msg = msgs[-1]\n",
    "\n",
    "    if state.get(\"finished\", False):\n",
    "        # When an order is placed, exit the app. The system instruction indicates\n",
    "        # that the chatbot should say thanks and goodbye at this point, so we can exit\n",
    "        # cleanly.\n",
    "        return END\n",
    "\n",
    "    elif hasattr(msg, \"tool_calls\") and len(msg.tool_calls) > 0:\n",
    "        # Route to `tools` node for any automated tool calls first.\n",
    "        if any(\n",
    "            tool[\"name\"] for tool in msg.tool_calls\n",
    "        ):\n",
    "            return \"datacreation\"\n",
    "        else:\n",
    "            return \"documenting\"\n",
    "\n",
    "    else:\n",
    "        return \"patient\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:11.906458Z",
     "iopub.status.busy": "2025-01-29T20:09:11.905241Z",
     "iopub.status.idle": "2025-01-29T20:09:11.994921Z",
     "shell.execute_reply": "2025-01-29T20:09:11.993761Z",
     "shell.execute_reply.started": "2025-01-29T20:09:11.906419Z"
    },
    "id": "9rqkQzlZxrzp",
    "trusted": true
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAFNCAIAAADKOSJ6AAAAAXNSR0IArs4c6QAAIABJREFUeJzs3WdYE9nbBvATEkLovSNiV1AEARUbKqKCXbFj77r2LtjLWlnXFbFgwa6IWLGCFRQVEQUUqUovCQmE9GTeD7Mvf1bpJJkQnt/lBwmTmTvt4eTMmXNIGIYhAAAACkOF6AAAAAD+A+oyAAAoFqjLAACgWKAuAwCAYoG6DAAAigXqMgAAKBYK0QEAMfIzuBy2mFMqFoswPk9CdJw6odJU1NRVNLTJmroUIws1ouMAICskGL/cfGAY9u1dWXpCeUZCectOGipkkoYOWd+EKuA2jbqsQkbMIiGnTEzTUMlN57XqrNm6i2aL9hpE5wJAyqAuNxefnjNjIxgtbTVbd9Zs1VmTRCIRnahRykqEGQnlRTl8ep6g13BDq3ZQnYHygLqs/HLTOQ/OFrR30uo9wkiF3LTL8e8KfvCi79G1DSiDJpsSnQUA6YC6rOQ+v2amxbOHTDfT0Fbmcwk5ady7J3OnrLPWMVQlOgsAjQV1WZl9fVda+JPv5m1MdBB5EPIll/f/nLCyhboWmegsADQK1GWlFX23mMeVDJxgQnQQubqw+4fXLDNDGK0BmjIYv6ycvseWlTFFza0oI4Sm+ba8ciCL6BQANArUZSVUnMvPSCwfMs2M6CDEmLrR+uG5PKJTANBwUJeV0OtbxbY9dYhOQRh9E6qqmkpSTCnRQQBoIKjLyibrOwch1Myvtug1wij6bjHRKQBoIKjLyuZrTGmf0UZEpyCYuhbZob9e4hsW0UEAaAioy0qlrESYm86T29wRbDb727dvRN29Zhat1L99KJPRzgGQKajLSiUjsbyVnabcDjdp0qTbt28TdfeaWbRRZ+QJeByxjPYPgOxAXVYqBT/4bRzkV5cFAkHD7oiPmm/w3euoU0+dzKRymR4CAFmAuqxUctO5OvoyuRD53LlzXl5effr0mTNnzrt37xBCw4cPZzAYISEhzs7Ow4cPx+tsQEDAyJEje/ToMWzYsGPHjonF/zZX9+3bN3jw4JcvX44ZM8bZ2fn9+/e/313qaBoqJflCWewZAJlS5jkTmiFOqVhDR/pXIb979+7o0aNDhw7t1atXdHQ0h8NBCO3fv/+PP/5wcnKaOnUqlUpFCJHJ5JiYmH79+llZWSUnJ585c0ZHR8fHxwffCZvNPnbs2IYNG7hcrouLy+93lzpNHUpOIVcWewZApqAuKw8eR0xRJVFUpf8dKDc3FyE0YcIEe3t7Ly8v/EZbW1sKhWJkZOTg4IDfQiaTg4ODK2YQzc7OjoyMrKjLAoHAz8+vc+fO1d1d6jR1KOWlIhntHADZgbqsPMRiTF1bJlP29OnTR0dHZ/PmzWvXru3Tp08NWzIYjFOnTr19+7a0tBQhpK2tXfErGo1WUZTlg0xBZIqyzWsKmgPoX1YemtoUVpFQIpH+RFRGRkZnzpxp2bLlihUr5syZU1hYWOVmdDp96tSp7969W7Ro0T///NOpU6eK/mWEkIaGvC91YbPEVDV4h4OmB961SkVDh8wplcnIMBsbmyNHjgQGBqampm7btq3i9srzEYaGhjIYjGPHjg0ZMsTOzs7MrPYJOmQ6nSGnVKShA98IQdMDdVmptGinIaMeVXxMm4uLS9++fSsuBlFXVy8u/t/lzkwmU19fv6IcM5nMmsvuL3eXOpEQ0zeFafJB00Ou3PYBTV1JobAohy/1yTESExPnzZsnEolSUlJu3rxpa2uLn/1LTk6OjIykUCjp6emqqqqampp37twRi8VCoTA4ODgiIqK8vHz8+PE0Gi0qKiojI2PatGmVd/vL3Q0MDKQb++mlgh6ehmrqME0+aGKgLisVNXWV2KfMLn10pbtbFov1/fv3x48fv3v3rlu3bps2bdLS0kII2dvbJycnh4eHf/v2zc7ObuDAgRKJJCQkJCIiokWLFps3b46Li+NwOM7OzlXW5V/u3qpVKylmLs7h//jGcR4k5VoPgBzAeiXK5l5QrttYY22D5v79/fNLpliMOQ7QJzoIAPUGZ0WUTTsH7Tfh9ME+1Z5z8/Pze/369e+3m5qaFhQU/H67rq6u7GaxqPD69Ws/P7/fb8cwDMMwFZUqToTcu3cPb7ZX6WVY8RL/NtKOCYA8QHtZCV3e93PIdFND86pnlWMwGDwe7/fbhUKhqmoVrWwVFZW6jKxoJB6Px2Awfr9dIpFIJBIKpYoGhJmZWZX1GiH05j5dlUpy9oBODNAkQV1WQj+/lWcklruNa3aL++FEAsm903mjF1kSHQSABoJxckrIuqOmuhYl5gGd6CDEuHIgq7+3MdEpAGg4qMvKqfsQA0a+4PNrJtFB5O12YE6vEYZ6xjKZCAkA+YB+DGX26laRrqGqfV89ooPIye3jOa7DDE1a0IgOAkCjQHtZmfUdbUzPF7wILSI6iMxx2KLgHZn2ffSgKAMlAO1l5ZcQxXr7gN5rhJFtDx2is0ifUCCJvktnFgoGTDTRafajtoFygLrcLHDZ4ui7xcW5gvZOWq07a+kaKUP9yknl5qZzY5+W9Bph2Hz6akBzAHW5GSkpECS+KU1PYJMpJOsOGlSaiqYORduAIm4qa5NKUClDWF4qIpHQlyiWiRWtraNWl95SvugcAMJBXW6OGPmCvExuOUtcXioik0llJVKegi4tLc3AwEBfX8rXQGtqU8hUpKlD0TGgWHfUpNLg7AhQTlCXgfStX7/ew8Nj0KBBRAcBoEmCFgcAACgWqMsAAKBYoC4D6TM2NqZS4Yo7ABoI6jKQvqKiInzdKQBAA0BdBtJHo9HIZFi9CYAGgroMpI/H44mbzKBoABQO1GUgfdra2tBeBqDBoC4D6SsrK4P2MgANBnUZSJ+pqWmVS1IBAOoC6jKQvoKCAqFQSHQKAJoqqMsAAKBYoC4D6dPQ0IDzfgA0GNRlIH0cDgfO+wHQYFCXgfRpampCexmABoO6DKSvvLwc2ssANBjUZQAAUCxQl4H0GRgYwPhlABoM6jKQPgaDAeOXAWgwqMsAAKBYoC4D6YN58QFoDKjLQPpgXnwAGgPqMgAAKBaoy0D6TE1NoR8DgAaDugykr6CgAPoxAGgwqMsAAKBYoC4D6YPxGAA0BtRlIH0wHgOAxoC6DAAAigXqMpA+Go0G83wC0GBQl4H08Xg8mOcTgAaDugykz9DQkEKhEJ0CgKYK6jKQPjqdLhKJiE4BQFMFdRkAABQL1GUgfVpaWtCPAUCDQV0G0sdms6EfA4AGg7oMpM/ExASu9wOgwaAuA+krLCyE6/0AaDCoy0D6oL0MQGNAXQbSB+1lABoD6jKQPl1dXRiPAUCDkTAMIzoDUBKDBw+mUqkkEonJZKqrq+P/p1KpoaGhREcDoCmBRg2QGj09vfT0dPz/XC4X/8+kSZMIDQVA0wP9GEBqJkyYoKamVvkWCwuLyZMnE5cIgCYJ6jKQmrFjx1paWlb8iGFY3759K98CAKgLqMtAalRUVLy9vSuazJaWlj4+PkSHAqDpgboMpGns2LEtWrTAG8t9+vQxNzcnOhEATQ/UZSBNFApl3LhxVCrVyspqypQpRMcBoEmC8Rj1JuRLGAWC8lJYj6Nq3Tp62tp86tSpk4Cpn84sJzqOIlJRQXrGqnrGcEkkqBqMX66fqLvFqXFsNQ2ylh5FApUZNIi2PiXrO0dLn9JtgJ6NrSbRcYDCgbpcD08vF6hrq9r3MyA6CFAGYpHkyYXcHp761h2gNIP/gP7lunoeUqSpB0UZSA2ZojJ0llX0XUZ+Jo/oLECxQF2uE0YBn0kXdu4NRRlImesIk4+RJUSnAIoF6nKdMPKFZDKJ6BRACekaUzOT4Owo+A+oy3VSXirSN1Grw4YA1A+ZTDK2Ui8rERIdBCgQqMt1IhEhAV9CdAqgnMpKhCQSfBsD/wN1GQAAFAvUZQAAUCxQlwEAQLFAXQYAAMUCdRkAABQL1GUAAFAsUJcBAECxQF0GAADFAnUZAAAUC9RlAABQLFCXAQBAsUBdlrcRo/oHHj9c33slfU3g8/kVP94IvTzA3ZnD4TRyP9VJSU0e4O785s2r+u6/Ss9fPB3g7vzzZ2bFLfn5eXn5uTI63C/CH9wePXZQQUF+dRuIxeIvXz41/kC/PCgAGgzqchPw8NHdJX/M5PG4CrKfRsrJzZ7iMzI5OUk+h6NS1TQ1tVRUqn2rHzi00//wnkYeRc4PCig3WHe1CahLC1ee+2kksUgkz9XLBrkPHeQ+tIYNBNJ4WuT8oIByg7osQ+EPbt8Mu/rzZ6aWlnYv135zZi/W1zdACLHZZbv/3BwV9VxXR2/SpBmjRnojhAQCwfkLpyIjHxUWFRgaGg32GDZzxgIymfzw0d3Df+9FCI0eOwghtH7d1qFDRuD7Dzp99OWrSC6X4+zUc/GiVaamZvjtSV8Tjp84nJycRKOp93Ltt2jRSh1tnRr2U52MzLSr188nJydZWVkvX7q+SxcH/Pa8/Nxjx/xjP8ZQqWrt23WcPXtxxw62CKEvXz5duBj0JeETQqhjB7uFC1d0aN/pl33m5efOmOWNENq+Y8N2hIYMGb5h3bYaDldYWHD67LGYmKjycnaLFi2nTJ6FF1kej3f4yN7o6JcIIXt7xz8WrzEzM3/79vXJoH9yc7PNzCxGjvAeO2bi3v3bHj26hxB68ugthUKpcoNnz58ghAa4OyOELl+6Y25m8eDhnVu3rqdnpKqra3R3cf1jyRo9PX28+yjy2ePx3lNPnw6gM4rbteu4ZpWftbVNDQ8KgAaAfgxZORd84sDBnS2sWq5e6TthvE9eXg5FVRX/1YOHdyhkysoVm2xatTn8997Pn+MQQmQyOTY2xrVXv0ULV3Zz7H7x0pnQm1cQQj26954w3gch9Ofuw0cOB/Xo3rviEEVFhfPm/DF82Ng3b18tXzm3jF2GEMrMTF+9ZqFQKFy3duuMafNev362ffv6mvdTnYuXTjs6uKxYvkEgEPhuXsVmsxFCdHrx0mWzS8tYfyxZs2D+MqFQuHzF3IyMNIRQfn4uX8Cf5jN3xvT5+fm5GzYu4/F+XbnO0MDId9MuhNCsmQuPHA7ymTK75sOJxKJv3xJHjfRetGCFjo7u7j1+X78lIoQuXzn76NE973FTFsxfVlrKUldX53A423asp6pSV6/y6+Xaj04vQgiNHTPJw8ML33+VG/hMmd3N0cXczOLI4aAjh4MMDYwQQklJX6ytbRbMXzZi+Nio6Bf7DmyvCPn1a8L16xdWr/bbsf1gUWHBn/u21vygAGgAaC/LRHFx0cVLZzw8vDZt2IHfMmni9IrfDvYYtn7dVoRQ3z4DJkz0fP7iib29I5lMPhYQXDE/em5e9stXkRPG++jrG1hYWCGEOnXqrKurV/koGzfs0NDQQAg5dHXa5Lfy5s2rM6bPu3jptIqKyv59R7W1tBFC2to6e/ZuiY//2LVrt+r2U53lS9cPGTIcIdTSutXiP2bGfoxx6+d+4WKQvp7BoQOBFAoFIeQxyMtn+uh74WFLl6wZNMizogh26GC7avXCLwmfXJx7Vt4nlUpt364jQsja2qaiAV7D4SzMLc+dCcGfFk/PUWPGDYqKet6po11efq66uvqUyTMpFMowr9F4Dy+fz+/bd6DHIM+KfbZv19GmZWv8/yVMxu8bWFlZ6+rqMUrolcOsWrmp4oWgUCgXL53h8/lqav8uWLN7118GBoYIobFjJx0L/ItVytLV0a3uQQHQAFCXZSLu0wexWDxqhHeVv60oizQazcLCqrCoAP+xpIRx/sKp9x/elpWVIoTwwloXrq59zUzNP336MGP6vE/xsY6OLhX3dXFxRQglf0/q2rVbfR+Fjo4u/h8bmzYIoaKiAoRQTExUYVGB1/C+FZsJhcKiwgKEEIlEevX62fWQiz9+ZOB/MEoY9EYeDiGUmvb9XPAJ/JSaWCxmMOgIoUHunhERD9dvWLpk8erWrdsihCzMLe3s7C9eOk2jqY8YPpZKpf6y/1o3qPyIboZdffI0vLAwX02NJpFImMySim4iGk0d/4+pqTlCiF5cpPv/yQGQCujHkAkmk4EQMjY2rXVLFTJZLBYjhBgM+vyFU2M/vps9a9G+vf90aN9JLBHX/YhGxibl5WyEUHk5W09Xv+J2bW0dvP3e0IeCEEL4YIZ/c5bQXV37Bp28UvEv+OyN5cvWI4TOXwjasnVth/a2u3f6L1ywAiEkwRqy+Fblw32Me794yQyhQLBu7dbtW/fr6Oji++zRvdefe/5mlNDnzJt08NAukUhEIpH27jkyZPDw4ycOT585Nj7+4y+7rXUDHIZhm3xXXLp8xnPoyH17j3oM8qrugahSVBFC9XqZAKgLaC/LhKamFl7CTExqL824O3dDS0oYAf+cw9tlJiZmWdk/Km9Q8+n+khKGpYUVQsjIyKS0lFX5doSQVqWmdyOHDWhr67BYTGtrm19u5/P5l6+cHeY1+o8lq/HzdY05SoULF4IsLKz27D6Md5uo/39bFS/NLs49Q29eORb4l6mp+TSfOVpaWiuWb5gwYdrmLav9Nq+6djUcb7ZXqG6Dys9JfPzH2I/vfDftwk8w5mT/lMoDAaDuoL0sE/b23RBC4eG3Km4RiUQ136W0lKmnp1/xZZlVyqwoFngxqqHNm5KanJOT1a1bd4SQnZ39p/jYihNuL19GIITwTs9a91MX3bp1T0iIT/7+teIWLpeLEOLxuHw+v/3/D8BglTIRQhKJBCFEVaUihCr+Wqip0fCv/3U5HKuU2bZNe7woCwQCDpeD71MgEOAt6/HeU42MjFNSvlUMBLQwtxw7ZhK7nJ3/21UeVW5Ao6kzGHR8txXJ8f7iXx5IDer1oACoGbSXZcLKssXwYWPu3rtZWspycXFlsZh374b6+58wN7Oo7i4ODs5ht66fORtoZ9f11avImJgoiUTCYjF1dfXsOnclk8lHjx30HDKSL+CPHDEOv8vuP/369RmYl58bduuahbnl8GFj8QEGkZGP1m9cOmL4uMLC/ODzJx0dnB26OiGEqttPvcyYPv/t29dr1y3Bz0m+exctloh37Tikq6vXunXbm2FXDQwMy9ns4PMnVVRU0tNTEUKtWrdVUVH56+8//1iyxtHB2cTE1MLc8vqNizR19dJS1tgxk2o4nIOD86NHd8Mf3NbR1g0JvVRWVpqZkYZh2M2wq1HRLzwGedHpRcXFRR062AqFwhmzxvV382hl0+b27RAtTS38PGeF6jboat/twcM7/n/t6dLZQVtbx7ZTFyqVeiro6LBhY9LTUy5fOYsQykhPtfzv3n7x+4OqOE8IQH1Be1lWVq7YOHfOkuTkpMN/771376aLiyuFXNNfwX59B06fNvfW7ZDdu32FImHA0XPW1jZht64hhCwtrFav8s3K+nE04ODz50/w7Qf091BX1wgI9A8NvezUrftf/ic1NTXxAQb79x4VCoX7D2y/dv2CxyCvHdsP4qMLqtxPfVlaWB09csbOzv7S5TMBxw4xWSWD3P8d3rDZd486TX3Hzo3XQi4sWrRyms+cR4/uCoVCczOL9Wu38vn8t29f4/28fn57NDQ0jwYcfPjoLt7TUp3ZMxe5OLv+c/TAkaP7nbr12LZlH51RHPfpg4WFlVAgCDz+1/3wW2PHTpo4YRqXx3V0cHka8eDwkb0UVdU9uw/TaLTKu6puAw8PrzGjJzx/8eRk0D+JSZ+NjU38fHenpH7btn1dbGyM/6ETPXv2uRl2teanpV4PCoCakeAipbqIe8YsKRK5DDEiOghQQiH+mRNWWmnpwZdX8C94KzRfy1bMzchI/f32Xr3cNq7fXtU9AADyAHW5+dri96dQJPz99spjHgAA8gd1ufkyMjImOgIAoApw3g8AABQL1GUAAFAsUJcBAECxQF0GAADFAnUZAAAUC9RlAABQLFCXAQBAsUBdBgAAxQJ1GQAAFAvUZQAUC4fDef/+/cmTJ6dOnUp0FkAMuA67TtTUSVQa/A0DMmFgSlUhkxITExMTE6OjozMyMsrLy0tKSvD1tEAzBHW5TvSMqYlv6V3dDIgOApRNeamopIA/Zdo4Pp9Pp9PFYjE+WTaJRNLR0SE6HSAG/EGuE7NWNISQSNiQVUQBqEF+JseiI0ldXb2oqEgikeBFGaeuDhP7NVNQl+tERYXUa7jh04u/rhcHQGMUZnE/vygZMtnmypUrHh4elRdYwTBMIpHMmjULIVRSUhIdHc1mswkNC+QH1iuph4KfvDsncru5G+oZU7X0VOGZAw1EQox8Ppsp/P6eNXm9NZn8bxv57NmzISEhhYWF+I8fPnxgMpl6enoMBmPr1q0SiSQgICA1NfXt27eurq5t2rQh9DEAGYK6XA98Pl8ipLy8k/39c6EqWYtGlebXTLFYzOfzqVQqvvazguNyuTV8yxYKhSoqKmQyWb6hZIvD4fxvVWwMQ//f4UAikTQ1NfFFwWk0WuWOiOoYmFFJJGTVXt2xv/4vv3r79u3+/fszMzNVVVVjYmJ+vy+dTj9//jyFQlm6dGl0dPTjx49HjBjh5OQkhUcIFAbU5VpgGEYikdhs9pIlSzAMO3/+fFFRUUlJSfv27aWy/+fPn2dnZ/v4+MTExGhpadnZ2UlltzI1b968L1++rFq1asKECVVusH79eg8Pj0GDBsk9mgxxOJw5c+akpKRUvlEikXz8+BH/f2xsbMuWLY2MjObOndu1a9elS5c27EB0On3NmjXZ2dlPntSyNi6bzX727BmFQvH09Lx+/fq9e/fmzJnj5ubGYDAMDOAcdVOGgaoIhUIMwxYuXNivXz8Mw9hs9pcvX6S4/+TkZAzDEhMTV61alZSUJMU9y1R+fv64ceMcHR2dnJwCAwOr2+z9+/e5ubnyjSYPLBZr4sSJTv/1+vXrXzb7+fPn2bNnMQyj0+nbt2//8OGDfOIlJCR8/vwZw7CgoKA+ffrg77GYmJi8vDz5BADSAu3l/+HxeDQabceOHeHh4U+fPtXS0oqNjZXuN0SxWEwmk6dOnWpgYPDPP//gP0px/zKVmJjo6+ubnZ2N/zh+/Pj169cTHUreiouLlyxZkpaWhv+op6dna2sbHx8/ZMiQoUOHduvWrfLGGIbduXMnOTl53bp1379/T0xM9PDw0NLSkkNODocjFou1tbUPHToUGRkZEBBgY2Nz//59AwOD7t27N6F3XfPU3OtySUmJvr7+1atXX716tWbNmlatWsXFxXXu3FlVVVW6B0pISAgMDNywYUOLFi0yMjJatWol3f3L2pMnTw4dOlRcXFxxy4ABAw4cOFDlxrdv327Xrp2tra0cA8pPXl7ekiVLfv78iZ+aw/sTHj169PDhw6ysLLxAd+rU6Zd7MZnMo0ePqqiobNq06f3790ZGRvJ8D+AtgLt37z569Gjx4sW2trZ//vlny5YtJ0+eXJcOcSBn5G3bthGdQd7YbDaVSn3+/Pm8efP09fXt7OwoFMr48eNNTEwQQubm5lJsTXz69Ck9Pb1FixbR0dG9e/fGu4/19X8926P45s6dy2QyK9+ir68/cuTIKjc+e/asiYlJ69at5ZVOrrS1tV1dXd+8eVNeXj537lyEEJVKtbW1HTly5JAhQ/Ly8s6ePfv27duMjAwTExNdXV38XjQarV+/fn379kUIpaen79y508LCwtraOjMzU09PT9aZ8UsHO3To4OXlZWxsjFfq79+/u7i4kMlkHx+flJSU3r17Q41WEM2lvSwSiSgUSmJi4ubNmydOnDhx4sS0tDR9fX0ZnR4pLS3V0dEJDw8PDQ1dv369tE4SEmjUqFFZWVkVVwZLJJIuXboEBwdXuXF2draOjo7SX67m7e1948aNKn+VnZ19//79Bw8e6OjoeHp6enp6/l58ORyOhobG6dOnL168eOnSJQsLC4lEQsi111+/fv3y5Yu3t7eKisqwYcMcHR137drFZrNVVFQ0NDTknwcof13Oy8vz8/PT1dX19/f/+fMnhmEtW7aU3eHYbPamTZs0NDT27t3LZrPl05koN0OGDGEymWKxGMOw1q1bh4SEEJ1I0SUmJj548ODjx4+GhoZeXl6enp6/b1NaWiqRSPT09Dw9PTt06HDw4EECx0qWlZV9+/bNxcUlIyNj+vTpI0aMWLdu3Y8fPzAMs7GxISpVs0P0iUfpk0gkQqHQ19d32bJlGIbl5OTExcXJ+qB5eXlHjhzB//P7CXqlMXz48JycHAzDBg4c6OHhUd1m9+/fj46Olm80RRcVFeXr6+vk5LR58+b3799Xt9nLly/5fD6fz587d+7jx4/lm7EK+fn5GIZ9/Phx7Nixx44dwzAsLi4uJiYGH7AEZESp2st37ty5efPm33//raam9uzZs759+8qhuZqfn29mZrZ8+XIXFxcfHx9ZH45AUVFR9+/f37NnT61bnj59ms/nL168WC65mhIMw8LDw+Pj46OiokaNGjV69Gj8rMbvPn78mJKSMnHixGfPnqWkpHh7exM+JBkfsBQbG4uPw5s6deqzZ88EAkHfvn2hu0O6mnxdzszMvHHjhpubm4uLy40bNzp06NClSxf5HPrNmzcbNmwICAjo3LmzfI5IrFWrVk2dOrUuAwfpdDqXy7WyspJLriYpPz//9u3bt27datu27ejRo93d3avbksViXb161cTEZMyYMc+ePTM1NVWcgS6fP3++evVqjx49Ro0aFR4ezuVy3d3d5XAaU+k11br84sULNTW1nj17BgcHU6nUMWPGVJ7zRaZiYmKysrK8vb1jY2M7dOigZD3I1UlISDhw4EB1J/pAg0VHR9+6dYvL5dra2k6cOLHmRnFUVNTx48cXLlzYu3fvtLQ0hZoi4+vXr2FhYQ4ODl5eXmFhYaWlpcOGDTMyMiI6V9NEdEdK/aSkpGAYduzYsZUrV6anp8s/QFxc3KJFi75//y7/QxNrzZo1r169quPGLBZr/fr1Mk6kVFgs1qlTpwYNGrRu3brY2NiaN+ZyuRiGHTlyxN3dnZBPQa3S0tL+/vvvR499UldvAAAgAElEQVQeYRgWEhISFBRUVFREdKimpMnU5aioKGdn5wcPHuBn9uR89GPHjk2ZMqXiI9HcxMfHz5w5s153GTJkSGFhocwSKa0nT57MnTt3woQJ4eHhtW7MYDDwa6xXrVq1Z88exXxzZmZmBgQEPH36FMOwK1euBAUF0el0okMpOoXuxygrKzty5IhEItm8efOPHz9atGgh59Gd+fn5WlpaZDL50qVLPj4+cusqUTSzZs1auXKlvb193e+SmppqZGQEXY0Nk5qa+vjx45s3b86ePXvKlCm1bs9msx8+fOjm5mZsbOzv7z948GDFPOeRmZkZHh7etWvX3r17BwcHq6iojBkzppn0BNYP0X8YqpCXl3f9+nUMw5KSkkJDQ/l8PiExzpw54+XlpZhtEHmKjIzct28f0SmaIwaDcfDgwV69egUFBdX9O+KNGzeWL1+OYVhRUVFiYqKMMzbct2/f/vrrL3wMa2Bg4M2bN2HsXQXFqstCoZDD4Xh5eYWEhBCV4efPny9evMAw7O3bt0RlUCg9e/ZswJ/GgoKC+fPnyyZR88LlcgMCApycnE6fPl2vO5aUlPj4+Gzfvh3DsLKyMpkFlIL379/v3LkzKysLw7BDhw69efOG6EQEU5S6fPXq1X79+nG5XGL/ZqakpIwaNSozM5PADAolICDgzp07DbvvtGnTEhISpJ2o+Tp+/PiAAQPu3btXr3vhJ9wiIyOnTJny6dMnmaWTmps3b/r6+uInD8+dO4df2NLcENy/HBUVpaam5uzsfP/+fTc3NwJ7mo4ePTp//nwmk1ndOP9m6NWrV6GhoYcPH27Y3fFWdrPtlJcFFot16NChtLS0VatW1XcG2m/fvrFYrB49ely8eNHQ0LDKK8IVSnl5+enTpykUyuLFixMSEkpLS3v16kV0KDkhsi7fvn07IiJiy5YthA9yXLFiRdeuXfE1LgFOJBL17t27yqWM6g5fnk56oQDCK6y/v3+rVq02btzYgLunpqaeO3fOw8PDzc3t+/fvTWJSrczMzEOHDllaWm7YsCElJcXMzExbW5voULIk/yZ6UFDQokWLMAwrLS2V/9Ery8nJuXHjBoZhRJ1aVGTbtm1r/Lwif//997lz56SUCPzHgwcPPDw8vn792pid/PXXX15eXk1lRCM+YdbLly/d3NzwWWhYLBbRoWRCfnVZKBSyWCw+nx8QEMDj8eR23OpwOJyKWXjAL/bu3Xvt2rXG70cgEGzatEkaiUAViouLp0yZcubMmcbsJC8vD++DXrdunSLMlFRHeOalS5fOmzeP8Bae1MmpH+Px48ebN2+OiIhQkLGKmZmZJiYmMNlKlUJDQ5OTkzdt2kR0EFAnf/75p42NzeTJkxu5n0+fPoWFhW3fvr2wsJDD4TSVWT1jY2NtbGwMDQ137NjRvXv3oUOHEp1ICmR+mUZsbCxCiEwm4+s9y/pwtSorK+vRowcU5erExMS8e/dOukX52LFjv6x1AqRo48aNGhoajX/JHBwctm/fji+/snr16gsXLkgpoGw5OTkZGhoihIYPH/7q1Ssul1taWhofH090rsaRXVOcx+MNGzYsIiJCdodogOjoaBi+Xp1Pnz7NmjVL6rtNTk6eNGmS1HcLKgsLC9uxY4cUd5iRkYFh2L59+y5fviwSiaS4Z1njcrmzZs0KCAggOkjDyaQfo6JxxOVyzc3Npb7/hsnLy0tKSqphQsVm7sWLFydPnrx06ZIsds5isUgkktKvLEWsu3fv5uXlzZ8/X4r7LC8vv3XrVu/evW1sbFJTU9u2bSvFnctUUVGRsbHxlStX8vLyFixYoKmpSXSiepB+P0ZMTMy4ceM0NDT09PQUpyhnZmb+8ccfUJSr8+HDh7CwMBkVZYSQrq5uWlpaUVGRjPYPEEIjRoyIiIhITU2V4j41NTWnTp2K9zXv27evCZ11wJeXnTx5sqmpaXh4OEKooKCA6FB1Jc32Mr6cwZMnTzw8PKS1T2nhcrnq6upEp1BQT58+DQkJOXHihKwPNGnSpJ07d7Zr107WB2q2Xrx4ERkZiXcTy8KXL1+6dOny6tUrNput+Fem/GLTpk3GxsYrV64kOkjtpNZejo2NXb16NUJIAYvyt2/fysvLiU6hoG7fvv3kyRM5FGWE0NWrVzU0NIRCoRyO1Ty5ubnl5eUJBAIZ7R9fDMjR0TEqKuratWsyOoqM7Nmzp2vXrgihrKwsorPUQmp1OTo6OiAgQFp7k6LCwsKVK1cSfkmhYtq7d29eXt6+ffvkdkRLS8uoqCgWiyW3IzY3paWlP378kOkhtLS0du3aNWzYMITQli1bwsLCZHo4KRo4cCBCiEKhuLu7K3J1lkJdvnr1KkJo6dKl0sgjfRkZGQcOHCA6hSJauHBhmzZtFi5cKOfj9u/ff8yYMSKRSM7HbSYsLS3ZbLYcDoQPe129enViYiKPx+PxeHI4qFSYm5uHhoamp6dLJBKis1StsXV5xowZPXv2lFIYmejRo4dizhFOoKKiooULF86ZM2f8+PGEBIiMjMzPz4dBzbJAoVB0dXXldjhdXV0/Pz81NTWBQDBu3Dj8egXFp6en5+bmRiKRhg4dqoDvw8bW5d27dyvydUESieTIkSNEp1AsERER06ZN27lzp4uLC4ExrKysEhISHj58SGAG5VNeXv7mzZvWrVvL+bj4IMhDhw69evUKIVRSUiLnAA1DIpEuXLhw8uRJooP8quF1+cCBAzweT8HXohcIBE3u7IRMHT58+NGjRw8fPsRHERGrT58+r169Ki0tJTqI8oiOjibwQmQbG5sVK1YghOLi4nx9fZvECV5jY+N169bl5ubKp/OnjhpYl5cuXTp9+nTFn1pXRUVl1apVRKdQCHw+f9u2bYaGhvv37yc6y//s3r0bw7CvX78SHURJREVFjRo1iugUaODAgX379n337h2fzyc6S51YWFisXLny48ePRAf5f0RfcAjk4eXLl66url++fCE6SNWKioq8vLwEAgHRQZq2p0+frl27lugU/8Hn84cOHfrz50+ig9RJXFxceXk50SmwhlyHHR4ebmxsTGzXZL2EhYV16dKlCV0/KnWHDh3Kyspq8LIj8pGfn5+Xl9e5c2dVVVWiszRVffr0efLkiaJdP1VYWBgbG+vp6SkSiSgUCtFxaiKRSPLy8iwtLYkOUs9+jMjIyOjo6CZUlBFCOjo6CtivLx/Z2dkLFiwwNzdX8KKMEDIzM3N0dBQIBDt37iQ6S5Pk7++/a9cuRSvKCCETExP8ysCDBw8q+EhnFRWVGzdunD9/nugghK4jJTfPnj1zc3NTUZH5pKYK5erVq1euXDl8+HCrVq2IzlIPt27dKigoWLBgAdFBmpKrV68KBILp06cTHaQWu3btmj9/voGBgcI2nCUSyZYtW3bt2kVsjHrU5aioqDZt2piZmck4EmgsHo+3Y8cOfX39tWvXEp2lIfBVAe/fv49fUQZq9s8//5SVlTWVGYX4fH5CQkJOTs7IkSOJzqK46tqEfPHiRWhoaNMtyjNmzMjOziY6hTyEh4e7u7uPHj26iRZlfMw/PjWoQg0dUUzh4eFmZmZNpSgjhNTU1JycnOLi4mR9sXiDZWZmRkZGEpuhru3lFy9e9OzZU01NTfaRZCIlJSUwMNDf35/oILK1du1aGo2mNF20+IS/GRkZTasrRm7OnDnD5/MXLVpEdJCGKCsr09bWjo2NdXJyIjrLfyQkJBw4cCA4OJjADHVtL7u5uTXdoowQateuXeWi7OXlRdQlyDLy5MmTGTNmeHp6Kk1RRgjho2iYTOaCBQuaxEUK8rR582aEUBMtygghbW1thNDp06cfPXr0y6/mzZtHUCiEEGrdujXhk2LWqS5PmTJFAS8hb4Dr16///PmzX79+hYWFXC5XYb9J1YtYLF67dm1ERERwcDA+XZaScXR0nD9/fnx8PJ1Or3x7v379mmdHh0gkWrFihaur6+zZs4nO0ljHjh3DL0+rfAVKamrqvXv3iIqkoaHh4+ND1NFxtdfliIgIBwcHvMuvqQsJCRk9ejSHw8FnyleCuhweHr5kyRJPT8+9e/cSnUWGnJycnJ2dBQLBrFmz8JcPfx2fP3/+7ds3otPJVXx8/NKlSxcvXuzl5UV0Fulwc3NDCE2fPv379+8IoV69epWVlYWEhBCVh8lkRkdHE3V0XO112d3dfd26dXIJI1tjxozJyMioGC3HYrF+/vxJdKiG43A4y5cvf/PmzfHjx5Wymfw7c3PzlStXPnv2DCGUk5ODX7MQGBhIdC75uXjxYlhYWGBgYPv27YnOImXXrl179+7d4MGD8Un9s7Ky7ty5Q0iSFy9ePH36lJBDV6ilLvN4POkuF0aUwYMH/9I6xjAsISGBuESNcvPmTR8fn/HjxytTb3Jd2NvbDxs2bMCAARXnqxMTEwn/FMnHggULMAzbtm0b0UFk5fr16wwGA/8/i8UiasYxa2vrSZMmEXLoCrXU5aCgIHzivqbu8ePHXl5eRkZGFZ9nEomUlpZGdK56o9PpCxYs+Pr1682bN/v06UN0HAJ4e3uXlZVV/MhkMoOCgghNJHMfP350dnaeN2/etGnTiM4iQ/h3IByJRMrLy8PXS5UzR0dHwr+O1FKXy8vLFWF6KqnYtWtXYGCgl5eXoaEhXp1FIlETWiIXIXT58uXJkyfPnz/f19eX6CyEKS4u/uWWHz9+KHFpPnXqVGBg4Pv3752dnYnOIkP4WvX4rD34LUwm8+LFi/JPsn//fsIX06nlasj169fLKwlCCImEEi5bhiu7GOm1WLdqa35+/pUrV2JjY4VcccrXbA2qoeyOKC1sNnvr1q0dO3YMvRaOECorqdv7BkPaBgp6wWt12EwhhpFq2MDMqBVPiycSiXg8nlAoxDBMRUXl6cOoPj09FGHGGenatGmTnZ2d//5ANlPc4J2oUlVomoo+CUFERMTJkyfj4+OzsrIwDBNwKDwet6SIF3otfPDgwXKLkZmZmRifzi1DCMmkNKtSSTRNcq2b1XRdSUpKCpfLtbe3l3a2Knx9V/r5FYuRL1DXqj20VGASCV8gUPwppHECgYBMJpPJ9XtyjCzUslM57bpq9RppJLcntsFehBZ9/1hm1lKdnlfLpL0YhmESCYZhEgyT4P+RSDQ0NOSVVE5EIhGJRKrvi/47NQ2ygCu2c9Vx9jCQUjRZyU7hxD1j/vjK0TMjcUrFYrFYzjMx4W+nxj/n1dHQIZezxLY9tXsMrak5WFNdXrVq1ahRo/BRLDL17jGjOFfo4GagbQBzPEqZUCApKeBHXsqdtM5aW19Bn16hQBLkl9F/gpmRJY2moeh/P5oiNlOYHl9WViIYOkNxp1JIjS+Pe1bSc4SJnhGV6CwyVM4SZiaxC39yR8wzJ5Gq/mpYU10+derUtGnTZN2ijHnIKKWLeg43kelRwOU/02ZutVFTV8Sqd8o3fdQSa3XNJtbl0uQkvWWW5PGGzlTE0pz6if35FctjurL1RFUnJY6VnVw+coFFlb+tqddp3rx5si7KJYWC4hw+FGU5GDDJPOouvQ4bylvMQ7rzYCMoynJg21NPVZ2cmVROdJAqxL9iDppWdZFSSu0cdXUMqSmfyqr8bbV1OS0t7ffr1qWuOIdf80keIC16xtSML4r4gcz+zlXYDhblQ6WRC37wiE7xK0a+gFsmru5LvbKiaZILMqs+lVJtXX727Fl6erosUyGEEJslNm7RNM68NXXqWhRDCzVuWcNP68sImULSM27CU2I1LYYWajyODIc8NQyzWGjZRtlO29bKwFyNz6v6taj2y2OnTp3kMOpIyJcIFe6Pt9IqzuGRFG+4VHEuHyHlXzRHQUhEGKeU4MG5v8PEWLnipZI1iRixqxnwWm1d7t27tywjAQAAqFq1zacTJ06w2Wz5hgEAAFB9XT516pSWlpZ8wwAAAKimLnO53I0bN8o9DAAAgGrqsrq6+rhx4+QeBgAAQDV1OTs7OzQ0VO5hAAAAVFOX09LSoqKi5B4GAABANXXZ2toa+jEAAIAQVY9fbtWqVatWreQeBgAAQDXt5U+fPkVGRso9DAAAgGrqcmJi4qdPn+QeBgAAQDV12dHRceDAgXIP0xC79vhNn1l7V3h+fl5efq5cEtXi9yThD26PHjuooCCfuFBNWHZO1gB354hImc99KF1sNvt7yrfKt8DbQA5k8bSLxeIvX6Tciq26Ltva2jo4OEj3SATKyc2e4jMyOTmJ6CBVJ6FS1TQ1tVRUFG9KISAzc+dPevDgduVb4G0gB7J42g8c2ul/eI800v1P1ef93rx5g2FYr169pHswoohFohqWZWkADMMaNldslUkGuQ8d5D5UStFA0yAQCH65pWFvg5zcbAtzy+Y2c3GDSetp/88++bUsR9kAVdflL1++KHJdjnz2OPj8yYKCPJuWrSWS/01g+uDhnVu3rqdnpKqra3R3cf1jyRo9Pf28/NwZs7wRQtt3bNiO0JAhwzes2yYQCM5fOBUZ+aiwqMDQ0Giwx7CZMxZULLYY/uD2zbCrP39mamlp93LtN2f2Yn19g1lzJrSyaWNj0+Zm2FU+nxdy7aGWllbcpw+ngo6mpX3X1zdwdHCZO2eJoaFRvZLs3b/t0aN7CKEnj95SKBSE0OPH9y9dOZubm21oaDTMa8zUKbNUVFRSUpOXLpu9d8+Rk0H/pKV9NzU1XzBvWe/eMl96UTExmSUBxw5FRb+gUtUcHZwr/yrpa8LxE4eTk5NoNPVerv0WLVqpo62D/+r3l1VbW8djSM95c/+YMnkmvs1G3xUsFvPY0XMpqckrVs7b7Lvn1OmjP39mmpqYTZ06m8Gg37l7g80uc3R0WbPKT09PH7/X7Ts3rodcLC4uNDOzcB84dOKEaWpqajW8ZJOmDC8pYdy6HXLrdoipqdnVy/d+eRvcCL0c+ezxeO+pp08H0BnF7dp1XLPKz9raBiEkFArPnA18GvGAy+XY23f7/v3rNJ+5o0Z6y/1FIJjfltWZGWnt2nX8EPuWRFLp0aP34oUr9fUNqvv01eVpRwjl5eceO+Yf+zGGSlVr367j7NmLO3awxQ/XwqolhUK5dz9MJBT27Nln+bINWlpae/dve/b8CUJogLszQujypTvmZlJYdaXqutyzZ0/pNjCl6GnEw917/BwdnCeM98nPz7185ZylZQv8V0lJX6ytbTw8vEpKGDfDrpZzyv/cfdjQwMh3067de/xmzVzo6OCMv3JkMjk2Nsa1Vz8Lc6vU1OSLl85oa+tMGO+DEDoXfCL4/Kn+boPGj5tawmS8f/+Govrvahrv37/h8Xl7dv3F4XK0tLRiP77bsHGZxyCvMaMnlpWyQm9eWbVm4YnAizQare5Jxo6ZJJFInjwJxw/x6NG9vfu3ubsPnTN7cVLSlzNnAxFC03zmIIT4fP72nRuW/rHW3Mzi7Lnju/b4Xr18T1dXj7iXghgCgWDNusU5OVkTxvuYmVncvh1S8avMzPTVaxba2LRZt3Yri1ly9tzxwsL8QwcDa35Zq8PhcA4f2bti2QaqmtrRgIP7D+zo0sVhs++egsL8Q/67AgL9fTfuRAidCz4ZcuPi2DGTWrZsnZWVee36+eycn5s27KjhJdu2df+69X84dHUa7z1VlUr9/W2AEPr6NeH69QurV/uJRCJ//91/7tsaGBCMEDp+8u87d27MnbPEyMgk8PhffD7Pc+hIWT7fiquouHDkSO8JE6Z9//719JljmRlpgcfOUyiUKj99CKFan3Y6vXjpstmWli3+WLKGRCI9fnx/+Yq5x49daNWqDULoesjFgQMG79l9+OePjIP+uwwNjRcuWO4zZXZRYUFeXs7GDTsQQoYGRlJ5aFXXZXt7e6nsXer4fP7RgIP29o4H9gfgzducnKzUtO/4b1et3FTxhY5CoVy8dIbP56upqbVv1xEhZG1t06XLv53mZDL5WEBwxca5edkvX0VOGO9TVFR48dIZDw8v/HOFEJo0cXrF0ckUymbfPRULp/9z9MCI4WOXLV2H/+js3HPGLO/3H9707TOg7knat+to07I1/n8Mw4LOBHTp4uC3aRdCqF/fgWVlpVevBY8bOxnfYOkfawcOGIwQmjv3jwULfeI/f+zXt2mcnpWiW7evp6WlHNgf4OzUAyFkZ2uPfwtBCF28dFpFRWX/vqPaWtoIIW1tnT17t8THf7SwsKryZRWJapmLfeGCFT179kEITRjvs2//9pXLN7Zq1aYz6hobGxPzLgohVFxcdOnyGT/f3W793PG7GBoa/3X4zz+WrMF/rPIl69jBlkKhGBoaVfk2qLB7118GBoYIobFjJx0L/ItVytLS1Lp37+Ywr9ETJ0zD3zC79/h9Sfjk1K27VJ/jpsGmZWu8LdWpo52mptbuPX7v3kX36tWvuk9frU/7hYtB+noGhw4E4m1nj0FePtNH3wsPW7pkDULIysp608adJBKpU0e7l68j3394s3DBcisra11dPUYJvWKfUlF1XY6JiZFIJK6urlI8klR8SfjEYjG9x02p6HNQIf9vgWehUHgz7OqTp+GFhflqajSJRMJklpiaVr36b0kJ4/yFU+8/vC0rK0UI4Z/k2I8xYrF41IiqvxV26tS5oijn5+f9+JGRk5N1735Y5W0KCwvqm6RCdvbP4uIi/COHc3FxDX9wOzvnJ/4+U6f9e3RTU3O8KNTtaVMqr14/a926LV6Uf3kDfIqPdXR0wV9K/NlDCCV/T8rLz6nhZa2BGvXfBa5UVakIIbyRhRAyNjZhsZgIodjYGJFItHuP3+49fviv8C+axUWF+I+Neclo/70vvbhILBIJBIKKL4j4f/A3cDPXvXsvhNDXbwm9evVr2KcPIRQTE1VYVOA1vG/FLUKhsKiwAP8/TY1WUe5NTc0TEuJl9miqqcvx8fEYhilgXS4szEcImVXVg4Nh2CbfFcnfk2ZMn29ra//qVeTVa+clWNXLZzEY9PkLp6qra8yetcjCwurMmWNZ2T/w2xFCxsamVd6r4jOGECopoSOEZkyf/0uL1cDAqF5JKmOXsxFCenoGFbdoa+vgH3Jjk/9EUqWoIoQkEoVbrE8OCgvz27XrWOWvysvZerr6FT/+++wVF+Ht4upe1gYgkUh4/aUzihFCe3YfNvnvzi0srDIy0yrf0piXDL+vWCLW1dXT0tT68uXTeO+peF8HQqhN63aNfkBNnpamFolE4nA5Df70IYQYJXRX177z5y6tfKOmZhXT0KtSVGX66au6LnfvrqBfi/BPHZNZ8vuv4uM/xn5857tpF352NSf7Zw37uXM3tKSEEfDPOfyvqImJGV6XtbS08ZfHxKSWzzC+JZ/Pw8/GVPbpU2zdk1SGf7bxhhiupIRRUV8ATk9XH39afmdkZFJayqr4Ed9MS0u7upe18cMYKl6a398GtWrAKRwymTx58sxTQUd37fY1MjK5fSdk3NjJLVq0rO9+lE9xcRGGYSbGprXWgRqedm1tHRaLKZ+XsmZVj9pzcHBQzPHLbdq0V1FReRrx4PdfsUqZeIdR5R/x0RpqajT8a2DFxqWlTD09/YqvNqxSJv7M4if3w8NvVWxZXReklZW1qanZg4d3uFxuxZZCobC+SSozNDQyMzV/9+5/M/m9ePGURqO1bduh/k+V0mrXrmNyclJW1o/ff2VnZ/8pPpbH+3cp35cvIxBCXbo4VPeykslkbW2dYvq/LweGYfgXsrpzdHQhkUhht65V3FLxfqiZOk2dTi+u17Fwo0dNcHHuWVLCYLPLfDft+mPJ6gbsRPmEP7iNn2yo4dNX69PerVv3hIT45O9fK26py6tJo6kzGPTKA8Mar+r28rt37zAM69GjhxSPJBWmpmaeQ0feD78l4PO7d+9FpxfHxLzW1zdECNl26kKlUk8FHR02bEx6esrlK2cRQhnpqZYWViYmphbmltdvXKSpq5eWssaOmeTg4Bx26/qZs4F2dl1fvYqMiYmSSCQsFrNFi5bDh425e+9maSnLxcWVxWLevRvq73/i97EvJBJpyeLVW7auXbJ05sgR3hKx+NHjex4eXt7jptQriZqaWuXdzpyxYO/+bQcO7nRxcf348d3rqOczps+v6NQGCKHJk2c+fnJ/+cp53uOmGBoYRUQ+rPiVz5TZkZGP1m9cOmL4uMLC/ODzJx0dnB26OpFIpOpe1u4urk8e3+/m6GKgb3g95OLPn5nVdZJUycqyxdgxk0JvXtnkt7JP7/50evGt29f/3PN3+9p20qWLY0Tkw8tXzmlr69jZ2rdu3baOR9y5e5OOjq6raz+EEAmRCgry69JzqpQyMtNOBR21srJOSIgPf3C7R4/enTt3LSoqrO7TV+vTPmP6/LdvX69dt2TCeB99fYN376LFEvGuHYdqjtHVvtuDh3f8/9rTpbODtrZOr179Gv/Qqh2/zOfzFbAu4ye4qVTq04iHH2Lfdu7s0KZN+//vFDbx890dcOzQtu3r7Gzt/Q+dOHvu+M2wq3369CeRSH5+e/Yf2H404KCJidmA/oP79R04fdrcsFvXb9267tqrX8DRc3/u3RJ269rMGQtWrthoZmZx797NqOgXxkYmLi6uFHLVz1LfPgP+3H347LnjAccOaWpq2XdxtLfvVt8kZmbmlfc5ZMhwHp8XcuPS4yf3jQyN589bWnlACEAIWVpY7dv7z/Hjh88FnzAxNu3TZ8D7D2/xX1lZWe/fe/Rk0D/7D2xXV9fwGOS1cMEKvLOiupd1yeLVfD5/776tmppaI0d48/i8yj0hdbFk8SoTE9OwsGvv378xNDTq22eAsZFJrfdaMH8Zg1F84WKQnq7+4sWr6l6Xuzm6nAs+UXHdOZlMXrdmy+DBw+qVWTno6xt8/ZoQduuamhpt5Ihx8+YurfnTV+vTbmlhdfTImcAThy9dPkMikdq16zhm9MRaY3h4eCV/T3r85P6bt6+GDhkhlbpMqrJnJCEhgc/nOzk5Nf4ANXv3iFMXhTAAABanSURBVCHgoa79DeqwLWisawfSfTa2pGmS67Ct/AT5pY9e0lJNQ7FSKSyxWFwxGKm0rHTDxmUUCuXI4aA63v1HEjvrW5nnLPM6bCs/afHsr+/K3CbUI5XfltVFhQUnjl+UZS7ZyknlJL9jjlpUxSiGqluCnTt3ln0qAEC9HfLfnZb23dW1n56e/s+szPT0lGHDxhAdCkhZ1XU5ISGhuLi4f//+cs8DAKhJ9+69CgvzQ29eFgqF5uaW06fNw8fMAWVSdV3OysqKioqCugyAounvNqi/2yCiUxCv1tNxTVrVddnOzu6XcQIAAADko+q6bG1tbW1tLfcwAAAAqrmuhMlkBgcHyz0MAACAauoylUoNCqrryBsAAABSVHVd1tDQWL58ea2zIAIAAJC6qvuXEULe3s1uBQQAAFAE1a42eP/+/aQk4hcqBQCA5qbaukyn0588eSLfMAAAAKrvxxg6dGhqaqp8wwAAAKi+LpuYmJiY1D4tFgAAAOmqth8DIRQQEPDzZ13X2mgYKo1EodWUAUiRsRVNonirnBtb0TDU2HVDQB2pkEmautW2xohCUshUsqZCJmkbVP2oa6qJampq9+/fl1kqhBDS1lct+lGn9R1AI5WXiuh5fA0thZtOUyzCSgp4RKdoLopzeOqK9x7QN1HN+s4hOoW8Fefw1DSqrsA11eUpU6a4u7vLLBVCCJm0UGv0EmugTkoKeG3sq1hBknAtO6qXMoREp2guBDyxWSsa0Sl+pW9C1dGnCIXSXIpJ8fE5IotqXoua6rKGhkb79u1llgrh7WXLtrSXofVbVA00QMSl/H5jjIhOUQWnQQaJr0uKcuBrk8zFPaOrkFCLdhpEB6mCo7v+k/M5RKeQny+vGXyOuFXnqptKVa9XUuHWrVsMBmP27Nkyi4cQQolvWCmf2F3dDPVNqWQKdDdLE5slZBUKnl7Km7vbhqahoF14EjEWvCPTycPQ0IKmY0glOo4Soufx0uJLVamkfmOMic5Srdx07rPrhT2Hm+gaUdXUFa6zRVoY+fwfSWwBTzRosml129RSl0Uikbu7+4sXL2ST8H8yEss/vWDmZ/DIFOjXkBqTFmrMImEbe80+o41ICt9h9OZ+ceqnci19SlEWn+gsSkVdk6xKU+ncS7tzLz2is9SiOJcf+7TkxzeOlh6FXSKPeSAwhGEYpkKSU3NQS0+VpILZ9dCx71fTa1FLXZY/Prd59THJFIZhtKa2bp6QL90V3wGi0lQU/o/yr3gcsXxaEq9fv3748OGuXbvkcCyEEFWtTn8Cav9iKxQKExISHB0dpZOrNmrq0I/RrKmqwRsAILm1J1q2sujdt7uilZ06tZePHDmiq6s7Y8YMuUQCAIBmrU5/JZYtW4ZhGHy9BAAomdzc3Ddv3hCd4ld1bb3PnDlTRUWxmvoAANBISUlJt27dIjrFr+oxcOr48eOOjo49evSQZR4AAJCfTp06GRsr3NjB+o3HWL58+Z49ezQ1NWUZCQAAmjWFGycHAABy8+jRIzs7OysrK6KD/Ee9u4yTkpICAwNlEwYAAOSHwWAcPHhQ0YpyA9vLL168SE1NnTNnjmwiAQCAPGRmZgqFwnbt2hEd5FcN78coLi42MlLEeXAAAKBJa/jQNwqFsnnzZqmGAQAAOVm2bFlcXBzRKarWqPN+4eHhHTp0aNOmjVQjAQCAbN2/f19TU7N///5EB6laY8djlJWVpaWlWVpaKuAYQAAA+F1cXJzcJvxpmMZewqetrW1raztt2rSioiIpRQIAAFnZsWOHSCSPGUQbQwqXVlOp1IcPH+bl5UkjDwAAyIRIJGKz2V27dnVxcSE6Sy2kfF3J2LFj//rrr5YtW0pxnwAA0Ejh4eESiWTo0KEUioKu2lOZlKciOn369NOnT6W7TwAAaIzMzMw3b94MHz68SRRlGV6HvXjx4uHDh3t5ecli5wAAUBfnzp2bOXMmk8nU01P0NbQqk9XUnUeOHImPj0cIsdlsGR0CAABqsGHDBnwxqqZVlOUxb1FSUtLx48d9fX1NTatd/BUAAKQlJCSkqKho8eLFPB6PRqMRHachZD7Vva2t7cSJE2/fvo0QKigokPXhAADNk1AoRAjFxsampaVNnz4dIdREi7K85/k8efJkUlLSgQMHVFVV5XZQAIDS8/f3T0tLCwgIEIlETeXkXg3kPf/yq1evOnfuLBaLP3/+PHDgQHkeGgCgZG7fvm1tbe3o6Hj//v1hw4YRHUdqiJkXXyAQ+Pr60mi0nTt3KsffNwCA3BQWFpqYmPj7+7PZ7BUrVujo6BCdSMqIXK8EH7xy7969t2/fLl682MLCgqgkAIAm4f3799u3b1+8eLFyj8FViHWkHjx4wGazx48f//Hjx7Zt2yrfXz8AQIOJRKKgoKCSkpKNGzd++vTJ1NTU3Nyc6FCyJfPxGHXh6ek5fvx4hFB5efmoUaPS0tKITgQAIFhiYuKRI0cQQiUlJWQyefbs2QghBwcHpS/KitJe/gXevzF69Oh+/fqtWrWK6DgAAPl5/fp1z549KRTKwoULXV1dZ8yYQXQiAihiXcZxudyHDx+OGTMmLy/v2rVro0ePtrGxIToUAED6srOztbS09PT0evTo0bNnT39/fzKZTHQoIiluXa4gFosvX76cnp6+devW7OzssrKyTp06ER0KANBY+fn5ZmZme/fuffPmzalTp0xMTIhOpCiaQF2uLC8vb+3atZ06dfL19S0qKoJFUgBoWuh0uqGh4b1797Zt23bo0CE3Nzf4IP9OIc771Z25ufnFixcXLVqEEPr48ePAgQNjYmIQQk3rrwsAzQo+ednz588HDRoUERGBEOrateuHDx/c3NwQQlCUf9fE2su/YLFYdDq9devWGzZs4HA4mzdvhtcYAEXAZrO1tLQSEhJ8fX29vb2nTZuWlpZmYGCgr69PdLQmoGnX5cqioqJatGhhbW29YcMGKyur+fPnU6lUokMB0IywWCxdXd38/Pxly5bZ2Njs378/KyuLRCJZWVkRHa2JUZ66XOHHjx+RkZEjRowwMjLatWuXnZ3dmDFjiA4FgHLC+4vZbPasWbM0NDSCg4NLSkoYDEabNm2IjtaEKWFdruzVq1cvXrxYt26dUCgMDAwcOHBgt27diA4FQNOWk5NjaWnJ4/EmTZpEpVKvX7/O4/Fyc3Nbt25NdDQloeR1uYJEIrl27VpKSsqWLVsyMzMjIiLc3d1hQDQAdZSSkmJhYaGpqTlhwgQej3fnzh2hUJifn9+iRQuioymh5lKXK+NwOOfOnWOz2evWrYuPj09ISHB3dzczMyM6FwAKRCwWx8XFWVtbm5iYzJgxg8/nnzhxQldXF4a1yUFzrMuVFRcXnz9/XkNDY+HChS9fvszNzfXw8DA0NCQ6FwAEYLFY79+/t7Gxadu27dKlSwUCwY4dO0xNTZvugkxNVHOvy5VlZ2dfuXLF2tp64sSJDx8+pNPpnp6eBgYGROcCQIZyc3OfPXvWsWNHJyenffv2MRiMpUuXwggKYkFdrlpGRkZYWJidnd2QIUMuX77M5XLHjRvX5FbVBaBKaWlpt2/fxt/eFy9eLCwsnDx5cnOYp62pgLpcu/T09IcPH/bo0cPJyQmfUWXOnDlaWlpE5wKgTjAMI5FIKSkpp06d6tix4+zZsx89elRcXDxkyBAjIyOi04EqQF2un8zMzJcvXw4cONDKymrp0qXGxsZr1qzR0NAgOhcA/1FQUGBqapqenr5582YbG5vdu3d//vy5qKioZ8+empqaRKcDtYC63HDZ2dmxsbFubm56enre3t4WFhb79u1TV1eHkyRA/oqKinJzc7t27ZqUlLRw4cLBgwf7+fkVFBSUlJR07NiR6HSgfqAuSweHw4mLi3N0dNTQ0PD09NTR0bl27ZpQKPzx40fbtm2JTgeUEIZh79+/z8vLGzVqVGJi4urVq0ePHr1w4UIWi0WhUKBR3KRBXZaJ1NTUtm3b8ni8GTNmkMnky5cv5+fnf/v2zcHBAU4egsa4fv16UlLStm3bioqKtmzZ0rdv3ylTpgiFQlVVVaKjAamBuixzAoGASqUWFRXt3buXzWafOHGisLAwPDzcxcXFzs6O6HRA0YlEoj179qSlpQUHByOEDh06ZGtr6+npSXQuIENQlwnA4XBOnz5dUlKyZcuWlJSUCxcuDBkypHfv3mKxuJkvnwPS0tIsLCzU1dXnzZv3+fPnmJgYgUDw4MEDW1vbdu3aEZ0OyAnUZYLx+fynT58K/6+9ew9q6srjAH5uCHncPG5CEiAgaEFXeYigAlrbaknxQWddu2Wwu7XDuFbsS+q0Y7cdtTP7ou46fTjt6oLVqVPtlIpaX+20s6yuSEBHAQV8ULQ8wyMP8k7uzU2yf8RVY4PSTkIu4ff5Cw65lx8z4Ztzzz33HJdr1apV1dXVR44cKSsrU6lURqORIAgMw8JdYAAmvevmZdtAl9MyQjusbr6YbRwiw12UH6GETTk8fGGUQMxWPsJ9JEMgT+SGu6jA+vr6Ll++nJ2dnZiYWF5ePjg4WFVVJZFI2tvb4XJq0oJcZpbOzk6KotLT08+dO7dp06a1a9e++uqrXV1dTqeTCXfVm88Yr9SZKdIjlOG4lMfmRLE5UWwu8/r4XuR2uWnK7SLdLgdlHrZ5aG/GQvHCIkY8valWqxsbG9esWRMbG/v6668TBFFeXi6Xy2maZrPZ4a4OhB/kMqP5FlRsaWnZsWPH4sWLy8rKjh49ihBasWLFOE/Fa2+0qE/oRHFCSbyQJ5p4Gw64nLRZax+4ps9dJstfPq5bZhgMhpiYmIaGhr1795aWlj7++OO7d+8Wi8XFxcVcLkN78SC8IJcnmPPnz9fW1paUlEyfPn3r1q04jpeXl4f04UMXhb7+l4YksbjpMdG8id2b83q9Qz+MeCjq12VKERGqzS27urqMRmN2drZarX7rrbfWrl27bt261tZWmqazsrLgFgJ4KMjlCezWrVvNzc0FBQVSqbSoqEihUFRWVvJ4PN8svYcerlKp8vLy3nvvvQe8xkV59v+5O/ZXMrEicubDUnZXp7q/5M0p8oQHdVd37txZU1NTV1f30BOSJHn69Gmr1VpcXKxWq99///3Vq1eXlJTo9Xocx/l8flDLB5EPcjlytLW1zZw5Mzo6urS0tKOjo6GhwXcrPzMzM+CmPvPnz0cIpaamVlRUBHwB5fBUf9QfPyt2oneTA+pu0qwsi5cqAkz7tdlsmzdvbmlpcTqdTU1NAQ+32+2VlZVWq3Xbtm0dHR379+9XqVQFBQUej4fFmmDbzAOmgVyOTL508E19HRwc3LVrl06nq6qqWrBgQUFBge818+bN8833UCqV69evX7ly5X0nqXznVuqCKWxOxF53d9T1PP/HJAHh96lz8eLFioqKnp4e37jHpUuXEEI9PT3JyckkSW7cuFGv1x8+fFiv13/77bdz585NT08P318AIhPk8mThcrmOHz+u0+k2bNhw/fr17du3t7W13fmpUCgsLCzcsmXLnZavPuzDYyXCmEi+Bqdd7pvqvg3b7+5K9/nnnx84cECv199pSUhIMJlMSqXyyy+/pCiqtbU1IyMD1j8BIQW5PEktW7bs3vRBCLFYrDlz5uzZswchdKl2pOsHt2zquM5bCAvTkJXPdi5dE4cQevvtt+vq6kjSby42QRCnTp2CIAbjCQbCJimapu987VufVy6XDw8P+1oaTuonQygjhIg4Yf9NUqchEUJXr16VyWT3zSA2mUwQymCcQX95ksrNzfV6vVKpVCAQJCcn5+XlZWRkZGdnYxh29qhueBCTT5ss6ytZtHaX2fLb1xIQQteuXWtvb6+vr+/t7TWZTAaDASHkG2IGYNxE4H12MBYpKSmLFi3KyclJT0+/d59Zr9fbccmSupCJm8+fv3js0LGKdzefEouDucuGSIF39xhHhilpLCctLS0tLa24uNjhcFy5cqW5ubmxsTGIvwuAsYBcnqSqq6sDtvfecHCFHIzFxHU5Qocr4v3YapOq7j7HyOfz8/Pz8/PzX3rppbCWBiYjGF8GfjovW/GYSbctlkiBd7TYwl0FALdBfxn4MepoYZwoRCdXXzj83/ovTObhGGlCTtbSJYvWREdz+zU3Pvl0/boXPvzm+12awQ6pRPn00tcy057wHdKvufH1Nx/09l8Vi+QKWXKIChNIeaY+RFEeDgd6KiD84F0I/Az3ONjckHxaf/+fPae++yR7dmHJqq1ZGaozdQdqjt1+BNzlIg9Ub3ni0ede/sNuqST+i0PbbDYjQmhI27V738tms7ao8JXFj/6+f+BGKArzsVtop8UduvMDMHbQXwZ3uSiPx4Oi2MH/tDaZtbVnP3u++C9ZmbefNiRE8sMn/v6bojd83656+s3s2YUIoaLCVz7aXXqzqzkr48lT332MYayNG/YKBVKEEMZiHTnxj6DX5sPhRdnMtFgGuzGB8INcBnfZTLQsISQP+P1w84LbTR+sefdgzbv/b/MihEyW2zOmOdG3f69UokQImS1ainLe6GxcmPusL5QRQlGsEL5d+QTXboX+MmAEyGVwFw+PGhl0xoVg/X2zRYcQWrfmAwkRe2+7LGbK4NDNe1vYUdEIIY/Hbbbo3G46RqoMfjWBOMwUlxfC5VIBGDvIZXAXTxDlpj0ej5cV7HlyfL7Y90WsYtoYD/F1k63WkeBWMhqadONi+HcAjAD3/YAfXMSmyeBfzs9ImY9h2LnzX91pISnHgw/h8QRyWdLl9lqadgW9np+inLRAHLEr54GJBXIZ+JEncB3m4G+iKpclPbZg9dXrdfsOvHn+0vF/n9m3/cNn+zTXH3zU0idf1Bv6Pq56sb7xkPrC4TP1B4NemA9pd3HxKC4fchkwAly4AT8zcgRNZ+1EXPB3J1m5YpOEiD3XeOhGZ6NYJM9MX0KIYx98yNw5yx0Oy5n6gye//zhOkTI1KVOr6w56YQghy7A9ZTYMLgOmgHWLgB+n3f3Zn7pnLZka7kLGVXeT5qnn5ImpkbzYNJhAoL8M/PDwqKSZuEVrE42+od/Wv6kCtk9Nmt3d2/rTdgGfeOeNI0Es8p+fbhgY6vxp+xTlrL6BwGMjf91SO9rZKIeLw8EglAFzQH8Z3G9kiDq6ayBlwZTRXmAY0QT+gRdDWIC3E4axpJL4IFZoMmvd7gA3AzFs1PdzjDRhtLP1tw3nPSWckROqp88B+LmgvwzuJ43jJKTwRvot0sTAUfWAjBsfhFgRrFM5zKSXdkEoA0aB+RgggKUvxBp6jZPhWkrfZVheGhfuKgDwA7kMAmCxsGdeTvjxQn+4CwmtgavDuU8R8gRuuAsBwA/kMggsJp5T+DtFX+tQuAsJFc01bUa+YOY8GMEAjAO5DEaVNBNf8ow0InvNmvahWTn8rMfE4S4EgABgPgZ4CJ2GrNnZr5wlI+Ij4ckL24jTpDHmqogZOZHw54CIBLkMHs7r8Z7cO6TTUIrUGKFsos7zddoobachOtpb+LxCFg9jyoC5IJfBWGn7yPoTem0/JZThIgWOS7isKKaPg3k9XoeVtAzZ7QY7IefMLRBPSw/+I+YABBfkMvh5zAbXrVZbR5PNrKdoysPhs0VyntM6Hku+jV00znYYScrhpl0eeSJvWjo+fY5QpuSM4VAAwg9yGfxCXq+XcnrsZrfD5vZ6wl2NPwxDXD4LJ9h8ASwRByYeyGUAAGAWpo8PAgDAZAO5DAAAzAK5DAAAzAK5DAAAzAK5DAAAzAK5DAAAzPI/w2mQbbF6IGEAAAAASUVORK5CYII=",
      "text/plain": [
       "<IPython.core.display.Image object>"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Auto-tools will be invoked automatically by the ToolNode\n",
    "auto_tools = [get_empty_datadict]\n",
    "tool_node = ToolNode(auto_tools)\n",
    "\n",
    "# Order-tools will be handled by the order node.\n",
    "intake_tools = [patient_id, symptom, confirm_data, get_data, clear_data, save_data]\n",
    "\n",
    "# The LLM needs to know about all of the tools, so specify everything here.\n",
    "llm_with_tools = llm.bind_tools(auto_tools + intake_tools)\n",
    "\n",
    "\n",
    "graph_builder = StateGraph(DataState)\n",
    "\n",
    "# Nodes\n",
    "graph_builder.add_node(\"chatbot_healthassistant\", chatbot_with_tools)\n",
    "graph_builder.add_node(\"patient\", human_node)\n",
    "graph_builder.add_node(\"datacreation\", tool_node)\n",
    "graph_builder.add_node(\"documenting\", data_node)\n",
    "\n",
    "# Chatbot -> {ordering, tools, human, END}\n",
    "graph_builder.add_conditional_edges(\"chatbot_healthassistant\", maybe_route_to_tools)\n",
    "# Human -> {chatbot, END}\n",
    "graph_builder.add_conditional_edges(\"patient\", maybe_exit_human_node)\n",
    "# TestCase_Paintrek\n",
    "# Tools (both kinds) always route back to chat afterwards.\n",
    "graph_builder.add_edge(\"datacreation\", \"chatbot_healthassistant\")\n",
    "graph_builder.add_edge(\"documenting\", \"chatbot_healthassistant\")\n",
    "\n",
    "graph_builder.add_edge(START, \"chatbot_healthassistant\")\n",
    "graph_with_order_tools = graph_builder.compile()\n",
    "\n",
    "Image(graph_with_order_tools.get_graph().draw_mermaid_png())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "id": "G0SVsDu4gD_T"
   },
   "source": [
    "Now run the complete ordering system graph.\n",
    "\n",
    "**You must uncomment the `.invoke(...)` line to run this step.**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-01-29T20:09:38.185616Z",
     "iopub.status.busy": "2025-01-29T20:09:38.185131Z",
     "iopub.status.idle": "2025-01-29T20:10:08.474591Z",
     "shell.execute_reply": "2025-01-29T20:10:08.472926Z",
     "shell.execute_reply.started": "2025-01-29T20:09:38.185577Z"
    },
    "id": "NCRSgaBUfIHF",
    "trusted": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: Welcome to the Paintrek world. I am a health assistant, an interactive clinical recording system. I will ask you questions about your pain and related symptoms and record your responses.  I will then store this information securely. At any time, you can type `q` to quit.\n"
     ]
    },
    {
     "ename": "KeyboardInterrupt",
     "evalue": "Interrupted by user",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[20], line 6\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;66;03m# The default recursion limit for traversing nodes is 25 - setting it higher\u001b[39;00m\n\u001b[1;32m      2\u001b[0m \u001b[38;5;66;03m# means you can try a more complex order with multiple steps and round-trips.\u001b[39;00m\n\u001b[1;32m      3\u001b[0m \u001b[38;5;66;03m# config = {\"recursion_limit\": 500}\u001b[39;00m\n\u001b[1;32m      4\u001b[0m \n\u001b[1;32m      5\u001b[0m \u001b[38;5;66;03m# Uncomment this line to execute the graph:\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m state \u001b[38;5;241m=\u001b[39m graph_with_order_tools\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: []})\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1961\u001b[0m, in \u001b[0;36mPregel.invoke\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, **kwargs)\u001b[0m\n\u001b[1;32m   1959\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1960\u001b[0m     chunks \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m   1962\u001b[0m     \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m   1963\u001b[0m     config,\n\u001b[1;32m   1964\u001b[0m     stream_mode\u001b[38;5;241m=\u001b[39mstream_mode,\n\u001b[1;32m   1965\u001b[0m     output_keys\u001b[38;5;241m=\u001b[39moutput_keys,\n\u001b[1;32m   1966\u001b[0m     interrupt_before\u001b[38;5;241m=\u001b[39minterrupt_before,\n\u001b[1;32m   1967\u001b[0m     interrupt_after\u001b[38;5;241m=\u001b[39minterrupt_after,\n\u001b[1;32m   1968\u001b[0m     debug\u001b[38;5;241m=\u001b[39mdebug,\n\u001b[1;32m   1969\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m   1970\u001b[0m ):\n\u001b[1;32m   1971\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m stream_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvalues\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m   1972\u001b[0m         latest \u001b[38;5;241m=\u001b[39m chunk\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1670\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, subgraphs)\u001b[0m\n\u001b[1;32m   1664\u001b[0m     \u001b[38;5;66;03m# Similarly to Bulk Synchronous Parallel / Pregel model\u001b[39;00m\n\u001b[1;32m   1665\u001b[0m     \u001b[38;5;66;03m# computation proceeds in steps, while there are channel updates.\u001b[39;00m\n\u001b[1;32m   1666\u001b[0m     \u001b[38;5;66;03m# Channel updates from step N are only visible in step N+1\u001b[39;00m\n\u001b[1;32m   1667\u001b[0m     \u001b[38;5;66;03m# channels are guaranteed to be immutable for the duration of the step,\u001b[39;00m\n\u001b[1;32m   1668\u001b[0m     \u001b[38;5;66;03m# with channel updates applied only at the transition between steps.\u001b[39;00m\n\u001b[1;32m   1669\u001b[0m     \u001b[38;5;28;01mwhile\u001b[39;00m loop\u001b[38;5;241m.\u001b[39mtick(input_keys\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_channels):\n\u001b[0;32m-> 1670\u001b[0m         \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m runner\u001b[38;5;241m.\u001b[39mtick(\n\u001b[1;32m   1671\u001b[0m             loop\u001b[38;5;241m.\u001b[39mtasks\u001b[38;5;241m.\u001b[39mvalues(),\n\u001b[1;32m   1672\u001b[0m             timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_timeout,\n\u001b[1;32m   1673\u001b[0m             retry_policy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_policy,\n\u001b[1;32m   1674\u001b[0m             get_waiter\u001b[38;5;241m=\u001b[39mget_waiter,\n\u001b[1;32m   1675\u001b[0m         ):\n\u001b[1;32m   1676\u001b[0m             \u001b[38;5;66;03m# emit output\u001b[39;00m\n\u001b[1;32m   1677\u001b[0m             \u001b[38;5;28;01myield from\u001b[39;00m output()\n\u001b[1;32m   1678\u001b[0m \u001b[38;5;66;03m# emit output\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/runner.py:230\u001b[0m, in \u001b[0;36mPregelRunner.tick\u001b[0;34m(self, tasks, reraise, timeout, retry_policy, get_waiter)\u001b[0m\n\u001b[1;32m    228\u001b[0m t \u001b[38;5;241m=\u001b[39m tasks[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m    229\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 230\u001b[0m     run_with_retry(\n\u001b[1;32m    231\u001b[0m         t,\n\u001b[1;32m    232\u001b[0m         retry_policy,\n\u001b[1;32m    233\u001b[0m         configurable\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m    234\u001b[0m             CONFIG_KEY_SEND: partial(writer, t),\n\u001b[1;32m    235\u001b[0m             CONFIG_KEY_CALL: partial(call, t),\n\u001b[1;32m    236\u001b[0m         },\n\u001b[1;32m    237\u001b[0m     )\n\u001b[1;32m    238\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcommit(t, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m    239\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/retry.py:40\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy, configurable)\u001b[0m\n\u001b[1;32m     38\u001b[0m     task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m     39\u001b[0m     \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 40\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m task\u001b[38;5;241m.\u001b[39mproc\u001b[38;5;241m.\u001b[39minvoke(task\u001b[38;5;241m.\u001b[39minput, config)\n\u001b[1;32m     41\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ParentCommand \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m     42\u001b[0m     ns: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m config[CONF][CONFIG_KEY_CHECKPOINT_NS]\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:462\u001b[0m, in \u001b[0;36mRunnableSeq.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    458\u001b[0m config \u001b[38;5;241m=\u001b[39m patch_config(\n\u001b[1;32m    459\u001b[0m     config, callbacks\u001b[38;5;241m=\u001b[39mrun_manager\u001b[38;5;241m.\u001b[39mget_child(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mseq:step:\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;250m \u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m1\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    460\u001b[0m )\n\u001b[1;32m    461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 462\u001b[0m     \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m    463\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    464\u001b[0m     \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:226\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m    224\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m    225\u001b[0m     context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, config)\n\u001b[0;32m--> 226\u001b[0m     ret \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m    227\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m    228\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
      "Cell \u001b[0;32mIn[14], line 6\u001b[0m, in \u001b[0;36mhuman_node\u001b[0;34m(state)\u001b[0m\n\u001b[1;32m      3\u001b[0m last_msg \u001b[38;5;241m=\u001b[39m state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m      4\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel:\u001b[39m\u001b[38;5;124m\"\u001b[39m, last_msg\u001b[38;5;241m.\u001b[39mcontent)\n\u001b[0;32m----> 6\u001b[0m user_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUser: \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m      8\u001b[0m \u001b[38;5;66;03m# If it looks like the user is trying to quit, flag the conversation\u001b[39;00m\n\u001b[1;32m      9\u001b[0m \u001b[38;5;66;03m# as over.\u001b[39;00m\n\u001b[1;32m     10\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m user_input \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mq\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquit\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexit\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgoodbye\u001b[39m\u001b[38;5;124m\"\u001b[39m}:\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/ipykernel/kernelbase.py:1282\u001b[0m, in \u001b[0;36mKernel.raw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m   1280\u001b[0m     msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraw_input was called, but this frontend does not support input requests.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m   1281\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m StdinNotImplementedError(msg)\n\u001b[0;32m-> 1282\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_input_request(\n\u001b[1;32m   1283\u001b[0m     \u001b[38;5;28mstr\u001b[39m(prompt),\n\u001b[1;32m   1284\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parent_ident[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mshell\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m   1285\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_parent(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mshell\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m   1286\u001b[0m     password\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m   1287\u001b[0m )\n",
      "File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/ipykernel/kernelbase.py:1325\u001b[0m, in \u001b[0;36mKernel._input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m   1322\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m:\n\u001b[1;32m   1323\u001b[0m     \u001b[38;5;66;03m# re-raise KeyboardInterrupt, to truncate traceback\u001b[39;00m\n\u001b[1;32m   1324\u001b[0m     msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInterrupted by user\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1325\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m   1326\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m   1327\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlog\u001b[38;5;241m.\u001b[39mwarning(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid Message:\u001b[39m\u001b[38;5;124m\"\u001b[39m, exc_info\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user"
     ]
    }
   ],
   "source": [
    "# The default recursion limit for traversing nodes is 25 - setting it higher\n",
    "# means you can try a more complex order with multiple steps and round-trips.\n",
    "# config = {\"recursion_limit\": 500}\n",
    "\n",
    "# Uncomment this line to execute the graph:\n",
    "state = graph_with_order_tools.invoke({\"messages\": []})\n",
    "\n",
    "# pprint(state)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2024-11-26T20:49:57.557546Z",
     "iopub.status.busy": "2024-11-26T20:49:57.557070Z",
     "iopub.status.idle": "2024-11-26T20:49:57.565305Z",
     "shell.execute_reply": "2024-11-26T20:49:57.563903Z",
     "shell.execute_reply.started": "2024-11-26T20:49:57.557497Z"
    },
    "id": "n4jUJCr3fJpy",
    "trusted": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "dict_keys(['messages', 'finished'])\n"
     ]
    }
   ],
   "source": [
    "# Uncomment this once you have run the graph from the previous cell.\n",
    "pprint(state.keys())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "trusted": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "colab": {
   "name": "day-3-building-an-agent-with-langgraph.ipynb",
   "toc_visible": true
  },
  "kaggle": {
   "accelerator": "none",
   "dataSources": [],
   "dockerImageVersionId": 30786,
   "isGpuEnabled": false,
   "isInternetEnabled": true,
   "language": "python",
   "sourceType": "notebook"
  },
  "kernelspec": {
   "display_name": "paintrekbot",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}