File size: 71,780 Bytes
f29a3a5 7828fde f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 3e595a5 f29a3a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.440091Z",
"iopub.status.busy": "2025-01-29T20:09:11.439766Z",
"iopub.status.idle": "2025-01-29T20:09:11.751153Z",
"shell.execute_reply": "2025-01-29T20:09:11.750263Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.440060Z"
},
"id": "xaiioUQni_ga",
"trusted": true
},
"outputs": [],
"source": [
"import os\n",
"\n",
"from typing import Annotated, Dict, Any\n",
"from typing_extensions import TypedDict\n",
"from datetime import date\n",
"\n",
"from langgraph.graph.message import add_messages\n",
"from langgraph.graph import StateGraph, START, END\n",
"from langchain_google_genai import ChatGoogleGenerativeAI\n",
"from langchain_openai import ChatOpenAI\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"from IPython.display import Image, display\n",
"from pprint import pprint\n",
"from langchain_core.messages.ai import AIMessage\n",
"from typing import Literal\n",
"from langchain_core.tools import tool\n",
"from langgraph.prebuilt import ToolNode"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.753044Z",
"iopub.status.busy": "2025-01-29T20:09:11.752582Z",
"iopub.status.idle": "2025-01-29T20:09:11.760099Z",
"shell.execute_reply": "2025-01-29T20:09:11.759040Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.752997Z"
},
"id": "2RJQRlfVjqkJ",
"trusted": true
},
"outputs": [],
"source": [
"# setup_openai_api()\n",
"# llm = ChatOpenAI(temperature=0)\n",
"\n",
"# setup_ollama_api()\n",
"# llm = ChatOllama(model=\"llama3.2:latest\", temperature=0)\n",
"\n",
"\"\"\"llm = ChatOpenAI(\n",
" api_key=\"ollama\",\n",
" model=\"llama3.2:latest\",\n",
" base_url=\"http://141.211.127.171/\",\n",
")\"\"\"\n",
"\n",
"setup_google_api()\n",
"llm = ChatGoogleGenerativeAI(model=\"gemini-1.5-flash-latest\")\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello there! How can I help you today?', additional_kwargs={}, response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': []}, id='run-eb83e576-ad78-40ef-86ef-4133db5ca191-0', usage_metadata={'input_tokens': 1, 'output_tokens': 11, 'total_tokens': 12, 'input_token_details': {'cache_read': 0}})"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.invoke(\"Hello\")"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.763927Z",
"iopub.status.busy": "2025-01-29T20:09:11.763466Z",
"iopub.status.idle": "2025-01-29T20:09:11.779944Z",
"shell.execute_reply": "2025-01-29T20:09:11.778675Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.763894Z"
},
"id": "2RJQRlfVjqkJ",
"trusted": true
},
"outputs": [],
"source": [
"class PainLevels(TypedDict):\n",
" left_head: int\n",
" right_head: int\n",
" left_arm: int\n",
" left_hand: int\n",
" right_arm: int\n",
" right_hand: int\n",
" left_body_trunk: int\n",
" right_body_trunk: int\n",
" left_leg: int\n",
" left_foot: int\n",
" right_leg: int\n",
" right_foot: int\n",
"\n",
"class Surgery(TypedDict):\n",
" surgery_name: str\n",
" time: date\n",
"\n",
"class PatientID(TypedDict):\n",
" name: str\n",
" DOB: date\n",
" gender: str\n",
" contact: str\n",
" emergency_contact: str\n",
"\n",
"class MainSymptom(TypedDict):\n",
" main_symptom: str\n",
" length: str\n",
"\n",
"class Pain(TypedDict):\n",
" painlevel: PainLevels\n",
" pain_description: str\n",
" start_time: date\n",
" radiation: bool\n",
" triggers: str\n",
" symptom: str\n",
"\n",
"class MedicalHistory(TypedDict):\n",
" medical_condition: str\n",
" first_time: date\n",
" surgery_history: list[Surgery]\n",
" medication: str\n",
" allergy: str\n",
"\n",
"class FamilyHistory(TypedDict):\n",
" family_history: str\n",
"\n",
"class SocialHistory(TypedDict):\n",
" occupation: str\n",
" smoke: bool\n",
" alcohol: bool\n",
" drug: bool\n",
" support_system: str\n",
" living_condition: str\n",
"\n",
"class ReviewSystem(TypedDict):\n",
" weight_change: str\n",
" fever: bool\n",
" chill: bool\n",
" night_sweats: bool\n",
" sleep: str\n",
" gastrointestinal: str\n",
" urinary: str\n",
"\n",
"class PainManagement(TypedDict):\n",
" pain_medication: str\n",
" specialist: bool\n",
" other_therapy: str\n",
" effectiveness: bool\n",
"\n",
"class Functional(TypedDict):\n",
" life_quality: str\n",
" limit_activity: str\n",
" mood: str\n",
"\n",
"class Plan(TypedDict):\n",
" goal: str\n",
" expectation: str\n",
" alternative_treatment_illness: str\n",
"\n",
"class PatientData(TypedDict):\n",
" ID: PatientID\n",
" main: MainSymptom\n",
" \"\"\"pain: Pain\n",
" medical_hist: MedicalHistory\n",
" family_hist: FamilyHistory\n",
" social_hist: SocialHistory\n",
" review_system: ReviewSystem\n",
" pain_manage: PainManagement\n",
" functional: Functional\n",
" plan: Plan\"\"\"\n",
"\n",
"class DataState(TypedDict):\n",
" \"\"\"State representing the patient's data status and conversation.\"\"\"\n",
" messages: Annotated[list, add_messages]\n",
" data: Dict[str, PatientData]\n",
" finished: bool"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.781576Z",
"iopub.status.busy": "2025-01-29T20:09:11.781212Z",
"iopub.status.idle": "2025-01-29T20:09:11.800825Z",
"shell.execute_reply": "2025-01-29T20:09:11.799561Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.781544Z"
},
"id": "2RJQRlfVjqkJ",
"trusted": true
},
"outputs": [],
"source": [
"# The system instruction defines how the chatbot is expected to behave and includes\n",
"# rules for when to call different functions, as well as rules for the conversation, such\n",
"# as tone and what is permitted for discussion.\n",
"MEDICAL_INTAKE_SYSINT = (\n",
" \"system\",\n",
" \"\"\"You are MedAssist, an intelligent medical intake system designed to gather comprehensive patient information. You guide patients through a structured data collection process while maintaining a supportive and professional demeanor.\n",
" \n",
" Before collecting any data, always use get_empty_datadict to create a new empty data dictionary for a new patient. Then use the following steps to collect data from a patient.\n",
" \n",
" Primary Data Collection Areas:\n",
" 1. Patient Identification\n",
" - Basic information (name, DOB, gender, contact)\n",
" - Emergency contact information\n",
"\n",
" 2. Main Symptom Assessment\n",
" - Primary complaint\n",
" - Duration of symptoms\n",
"\n",
" 3. Pain Assessment\n",
" - Pain location using body mapping (head, arms, hands, trunk, legs, feet)\n",
" - Pain intensity (0-10 scale for each location)\n",
" - Pain characteristics and patterns\n",
" - Onset time\n",
" - Radiation patterns\n",
" - Triggering factors\n",
" - Associated symptoms\n",
"\n",
" 4. Medical History\n",
" - Existing medical conditions\n",
" - First occurrence date\n",
" - Surgical history with dates\n",
" - Current medications\n",
" - Allergies\n",
"\n",
" 5. Background Information\n",
" - Family medical history\n",
" - Social history (occupation, lifestyle factors)\n",
" - Living conditions and support system\n",
"\n",
" 6. System Review\n",
" - Recent health changes\n",
" - Sleep patterns\n",
" - Gastrointestinal and urinary function\n",
" - Constitutional symptoms (fever, chills, night sweats)\n",
"\n",
" 7. Pain Management History\n",
" - Current pain medications\n",
" - Specialist consultations\n",
" - Alternative therapies\n",
" - Treatment effectiveness\n",
"\n",
" 8. Functional Assessment\n",
" - Impact on quality of life\n",
" - Activity limitations\n",
" - Mood and emotional state\n",
"\n",
" 9. Treatment Planning\n",
" - Treatment goals\n",
" - Patient expectations\n",
" - Alternative treatment considerations\n",
"\n",
" Data Management Commands:\n",
" - Use get_data to review current information\n",
" - Use add_to_data to append new information\n",
" - Use clear_data to reset the current session\n",
" - Use confirm_data to verify information with the patient\n",
" - Use insert_data to finalize the record\n",
"\n",
" Guidelines:\n",
" 1. Always introduce yourself and explain the intake process\n",
" 2. Collect information systematically but adapt to the patient's natural flow of conversation\n",
" 3. If patient starts with a specific concern, begin there but ensure all sections are eventually completed\n",
" 4. Use conversational prompts to gather missing information\n",
" 5. Validate pain levels on a 0-10 scale for each body location\n",
" 6. Regularly summarize collected information for patient verification\n",
" 7. Show empathy while maintaining professional boundaries\n",
" 8. Focus on medical data collection while acknowledging patient concerns\n",
" 9. Always confirm complete data set before finalizing\n",
" 10. Thank the patient and provide clear closure when finished\n",
"\n",
" Remember:\n",
" - Maintain medical privacy and confidentiality\n",
" - Stay within scope of data collection\n",
" - Be patient and clear in communication\n",
" - Double-check all information before final submission\n",
" - Adapt language to patient's comprehension level\n",
" - Document 'unknown' or 'not applicable' when appropriate\n",
"\n",
" Always confirm_data with the patient before calling save_data, and address any corrections needed. Once save_data is complete, provide a summary and conclude the session.\"\"\"\n",
")\n",
"\n",
"# This is the message with which the system opens the conversation.\n",
"WELCOME_MSG = \"Welcome to the Paintrek world. I am a health assistant, an interactive clinical recording system. I will ask you questions about your pain and related symptoms and record your responses. I will then store this information securely. At any time, you can type `q` to quit.\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.828125Z",
"iopub.status.busy": "2025-01-29T20:09:11.827744Z",
"iopub.status.idle": "2025-01-29T20:09:11.835672Z",
"shell.execute_reply": "2025-01-29T20:09:11.834403Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.828093Z"
},
"id": "SWXwd1ITUSPF",
"trusted": true
},
"outputs": [],
"source": [
"def human_node(state: DataState) -> DataState:\n",
" \"\"\"Display the last model message to the user, and receive the user's input.\"\"\"\n",
" last_msg = state[\"messages\"][-1]\n",
" print(\"Model:\", last_msg.content)\n",
"\n",
" user_input = input(\"User: \")\n",
"\n",
" # If it looks like the user is trying to quit, flag the conversation\n",
" # as over.\n",
" if user_input in {\"q\", \"quit\", \"exit\", \"goodbye\"}:\n",
" state[\"finished\"] = True\n",
"\n",
" return state | {\"messages\": [(\"user\", user_input)]}\n",
"\n",
"\n",
"def maybe_exit_human_node(state: DataState) -> Literal[\"chatbot_healthassistant\", \"__end__\"]:\n",
" \"\"\"Route to the chatbot, unless it looks like the user is exiting.\"\"\"\n",
" if state.get(\"finished\", False):\n",
" return END\n",
" else:\n",
" return \"chatbot_healthassistant\"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"@tool\n",
"def get_empty_datadict(state: DataState) -> DataState:\n",
" \"\"\"Before collecting data, get a empty data dictionary for a new patient\"\"\"\n",
" # Note that this is just hard-coded text, but you could connect this to a live stock\n",
" # database, or you could use Gemini's multi-modal capabilities and take live photos of\n",
" # your cafe's chalk menu or the products on the counter and assmble them into an input.\n",
" state[\"data\"]= {\n",
" \"patient_1\": {\n",
" \"data_1\": { # Placeholder patient ID, can be replaced dynamically\n",
" \"ID\": {\n",
" \"name\": \"\",\n",
" \"DOB\": date(1900, 1, 1), # Default placeholder date\n",
" \"gender\": \"\",\n",
" \"contact\": \"\",\n",
" \"emergency_contact\": \"\"\n",
" },\n",
" \"main\": {\n",
" \"main_symptom\": \"\",\n",
" \"length\": \"\"\n",
" }\n",
" }\n",
" }\n",
" }\n",
" return state\n"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.858218Z",
"iopub.status.busy": "2025-01-29T20:09:11.857696Z",
"iopub.status.idle": "2025-01-29T20:09:11.903753Z",
"shell.execute_reply": "2025-01-29T20:09:11.902647Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.858152Z"
},
"id": "jqsLovPBQe0I",
"trusted": true
},
"outputs": [],
"source": [
"from collections.abc import Iterable\n",
"from random import randint\n",
"\n",
"from langgraph.prebuilt import InjectedState\n",
"from langchain_core.messages.tool import ToolMessage\n",
"\n",
"# These functions have no body; LangGraph does not allow @tools to update\n",
"# the conversation state, so you will implement a separate node to handle\n",
"# state updates. Using @tools is still very convenient for defining the tool\n",
"# schema, so empty functions have been defined that will be bound to the LLM\n",
"# but their implementation is deferred to the order_node.\n",
"\n",
"\n",
"@tool\n",
"def patient_id(name: str, DOB: str, gender: str, contact: str, emergency_contact: str) -> str:\n",
" \"\"\"Collecting basic patient identification information including:\n",
" - Basic information (name, DOB, gender, contact details)\n",
" - Emergency contact information\n",
"\n",
" Returns:\n",
" The updated data with the patient ID information added.\n",
" \"\"\"\n",
"\n",
"@tool\n",
"def symptom(main_symptom: str, length: str) -> str:\n",
" \"\"\"Collecting patient's main symptom assessment including:\n",
" - Primary symptoms\n",
" - Duration of the symptoms\n",
"\n",
" Returns:\n",
" The updated data with the patient's symptom information added.\n",
" \"\"\"\n",
"\n",
"\n",
"@tool\n",
"def confirm_data() -> str:\n",
" \"\"\"Asks the patient if the data intake is correct.\n",
"\n",
" Returns:\n",
" The user's free-text response.\n",
" \"\"\"\n",
"\n",
"\n",
"@tool\n",
"def get_data() -> str:\n",
" \"\"\"Returns the users data so far. One item per line.\"\"\"\n",
"\n",
"\n",
"@tool\n",
"def clear_data():\n",
" \"\"\"Removes all items from the user's order.\"\"\"\n",
"\n",
"\n",
"@tool\n",
"def save_data() -> int:\n",
" \"\"\"Send the data into database.\n",
"\n",
" Returns:\n",
" The status of data saving, finished.\n",
" \"\"\"\n",
"\n",
"\n",
"def data_node(state: DataState) -> DataState:\n",
" \"\"\"The ordering node. This is where the dataintake is manipulated.\"\"\"\n",
" tool_msg = state.get(\"messages\", [])[-1]\n",
" data = state.get(\"data\", [])\n",
" outbound_msgs = []\n",
" data_saved = False\n",
"\n",
" for tool_call in tool_msg.tool_calls:\n",
"\n",
" if tool_call[\"name\"] == \"patient_id\":\n",
"\n",
" # Each order item is just a string. This is where it assembled as \"drink (modifiers, ...)\".\n",
" patient_name = tool_call[\"args\"][\"name\"]\n",
" patient_DOB = tool_call[\"args\"][\"DOB\"]\n",
" patient_gender = tool_call[\"args\"][\"gender\"]\n",
" patient_contact = tool_call[\"args\"][\"contact\"]\n",
" patient_emergency_contact = tool_call[\"args\"][\"emergency_contact\"]\n",
"\n",
" data[\"ID\"][\"name\"]=patient_name\n",
" data[\"ID\"][\"DOB\"]=patient_DOB\n",
" data[\"ID\"][\"gender\"]=patient_gender\n",
" data[\"ID\"][\"contact\"]=patient_contact\n",
" data[\"ID\"][\"emergency_contact\"]=patient_emergency_contact\n",
" \n",
" response = \"\\n\".join(data)\n",
"\n",
" if tool_call[\"name\"] == \"symptom\":\n",
"\n",
" # Each order item is just a string. This is where it assembled as \"drink (modifiers, ...)\".\n",
" main_symptom = tool_call[\"args\"][\"main_symptom\"]\n",
" symptom_length = tool_call[\"args\"][\"length\"]\n",
"\n",
" data[\"symptom\"][\"main_symptom\"]=main_symptom\n",
" data[\"symptom\"][\"symptom_length\"]=symptom_length\n",
" response = \"\\n\".join(data)\n",
"\n",
" elif tool_call[\"name\"] == \"confirm_data\":\n",
"\n",
" # We could entrust the LLM to do order confirmation, but it is a good practice to\n",
" # show the user the exact data that comprises their order so that what they confirm\n",
" # precisely matches the order that goes to the kitchen - avoiding hallucination\n",
" # or reality skew.\n",
"\n",
" # In a real scenario, this is where you would connect your POS screen to show the\n",
" # order to the user.\n",
"\n",
" print(\"Your input data:\")\n",
" if not data:\n",
" print(\" (no items)\")\n",
"\n",
" for data in data:\n",
" print(f\" {data}\")\n",
"\n",
" response = input(\"Is this correct? \")\n",
"\n",
" elif tool_call[\"name\"] == \"get_data\":\n",
"\n",
" response = \"\\n\".join(data) if data else \"(no data)\"\n",
"\n",
" elif tool_call[\"name\"] == \"clear_data\":\n",
"\n",
" data.clear()\n",
" response = None\n",
"\n",
" elif tool_call[\"name\"] == \"save_data\":\n",
"\n",
" #order_text = \"\\n\".join(order)\n",
" print(\"Saving the data!\")\n",
" #print(order_text)\n",
"\n",
" # TODO(you!): Implement cafe.\n",
" data_saved = True\n",
" # response = randint(1, 5) # ETA in minutes\n",
"\n",
" else:\n",
" raise NotImplementedError(f'Unknown tool call: {tool_call[\"name\"]}')\n",
"\n",
" # Record the tool results as tool messages.\n",
" outbound_msgs.append(\n",
" ToolMessage(\n",
" content=response,\n",
" name=tool_call[\"name\"],\n",
" tool_call_id=tool_call[\"id\"],\n",
" )\n",
" )\n",
"\n",
" return {\"messages\": outbound_msgs, \"data\": data, \"finished\": data_saved}\n",
"\n",
"def chatbot_with_tools(state: DataState) -> DataState:\n",
" \"\"\"The chatbot with tools. A simple wrapper around the model's own chat interface.\"\"\"\n",
" defaults = {\"data\": {\n",
" \"patient_1\": {\n",
" \"data_1\": { # Placeholder patient ID, can be replaced dynamically\n",
" \"ID\": {\n",
" \"name\": \"\",\n",
" \"DOB\": date(1900, 1, 1), # Default placeholder date\n",
" \"gender\": \"\",\n",
" \"contact\": \"\",\n",
" \"emergency_contact\": \"\"\n",
" },\n",
" \"main\": {\n",
" \"main_symptom\": \"\",\n",
" \"length\": \"\"\n",
" }\n",
" }\n",
" }\n",
" }, \"finished\": False}\n",
"\n",
" if state[\"messages\"]:\n",
" new_output = llm_with_tools.invoke([MEDICAL_INTAKE_SYSINT] + state[\"messages\"])\n",
" else:\n",
" new_output = AIMessage(content=WELCOME_MSG)\n",
"\n",
" # Set up some defaults if not already set, then pass through the provided state,\n",
" # overriding only the \"messages\" field.\n",
" return defaults | state | {\"messages\": [new_output]}\n",
"\n",
"\n",
"def maybe_route_to_tools(state: DataState) -> str:\n",
" \"\"\"Route between chat and tool nodes if a tool call is made.\"\"\"\n",
" if not (msgs := state.get(\"messages\", [])):\n",
" raise ValueError(f\"No messages found when parsing state: {state}\")\n",
"\n",
" msg = msgs[-1]\n",
"\n",
" if state.get(\"finished\", False):\n",
" # When an order is placed, exit the app. The system instruction indicates\n",
" # that the chatbot should say thanks and goodbye at this point, so we can exit\n",
" # cleanly.\n",
" return END\n",
"\n",
" elif hasattr(msg, \"tool_calls\") and len(msg.tool_calls) > 0:\n",
" # Route to `tools` node for any automated tool calls first.\n",
" if any(\n",
" tool[\"name\"] for tool in msg.tool_calls\n",
" ):\n",
" return \"datacreation\"\n",
" else:\n",
" return \"documenting\"\n",
"\n",
" else:\n",
" return \"patient\""
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:11.906458Z",
"iopub.status.busy": "2025-01-29T20:09:11.905241Z",
"iopub.status.idle": "2025-01-29T20:09:11.994921Z",
"shell.execute_reply": "2025-01-29T20:09:11.993761Z",
"shell.execute_reply.started": "2025-01-29T20:09:11.906419Z"
},
"id": "9rqkQzlZxrzp",
"trusted": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAd0AAAFNCAIAAADKOSJ6AAAAAXNSR0IArs4c6QAAIABJREFUeJzs3WdYE9nbBvATEkLovSNiV1AEARUbKqKCXbFj77r2LtjLWlnXFbFgwa6IWLGCFRQVEQUUqUovCQmE9GTeD7Mvf1bpJJkQnt/lBwmTmTvt4eTMmXNIGIYhAAAACkOF6AAAAAD+A+oyAAAoFqjLAACgWKAuAwCAYoG6DAAAigXqMgAAKBYK0QEAMfIzuBy2mFMqFoswPk9CdJw6odJU1NRVNLTJmroUIws1ouMAICskGL/cfGAY9u1dWXpCeUZCectOGipkkoYOWd+EKuA2jbqsQkbMIiGnTEzTUMlN57XqrNm6i2aL9hpE5wJAyqAuNxefnjNjIxgtbTVbd9Zs1VmTRCIRnahRykqEGQnlRTl8ep6g13BDq3ZQnYHygLqs/HLTOQ/OFrR30uo9wkiF3LTL8e8KfvCi79G1DSiDJpsSnQUA6YC6rOQ+v2amxbOHTDfT0Fbmcwk5ady7J3OnrLPWMVQlOgsAjQV1WZl9fVda+JPv5m1MdBB5EPIll/f/nLCyhboWmegsADQK1GWlFX23mMeVDJxgQnQQubqw+4fXLDNDGK0BmjIYv6ycvseWlTFFza0oI4Sm+ba8ciCL6BQANArUZSVUnMvPSCwfMs2M6CDEmLrR+uG5PKJTANBwUJeV0OtbxbY9dYhOQRh9E6qqmkpSTCnRQQBoIKjLyibrOwch1Myvtug1wij6bjHRKQBoIKjLyuZrTGmf0UZEpyCYuhbZob9e4hsW0UEAaAioy0qlrESYm86T29wRbDb727dvRN29Zhat1L99KJPRzgGQKajLSiUjsbyVnabcDjdp0qTbt28TdfeaWbRRZ+QJeByxjPYPgOxAXVYqBT/4bRzkV5cFAkHD7oiPmm/w3euoU0+dzKRymR4CAFmAuqxUctO5OvoyuRD53LlzXl5effr0mTNnzrt37xBCw4cPZzAYISEhzs7Ow4cPx+tsQEDAyJEje/ToMWzYsGPHjonF/zZX9+3bN3jw4JcvX44ZM8bZ2fn9+/e/313qaBoqJflCWewZAJlS5jkTmiFOqVhDR/pXIb979+7o0aNDhw7t1atXdHQ0h8NBCO3fv/+PP/5wcnKaOnUqlUpFCJHJ5JiYmH79+llZWSUnJ585c0ZHR8fHxwffCZvNPnbs2IYNG7hcrouLy+93lzpNHUpOIVcWewZApqAuKw8eR0xRJVFUpf8dKDc3FyE0YcIEe3t7Ly8v/EZbW1sKhWJkZOTg4IDfQiaTg4ODK2YQzc7OjoyMrKjLAoHAz8+vc+fO1d1d6jR1KOWlIhntHADZgbqsPMRiTF1bJlP29OnTR0dHZ/PmzWvXru3Tp08NWzIYjFOnTr19+7a0tBQhpK2tXfErGo1WUZTlg0xBZIqyzWsKmgPoX1YemtoUVpFQIpH+RFRGRkZnzpxp2bLlihUr5syZU1hYWOVmdDp96tSp7969W7Ro0T///NOpU6eK/mWEkIaGvC91YbPEVDV4h4OmB961SkVDh8wplcnIMBsbmyNHjgQGBqampm7btq3i9srzEYaGhjIYjGPHjg0ZMsTOzs7MrPYJOmQ6nSGnVKShA98IQdMDdVmptGinIaMeVXxMm4uLS9++fSsuBlFXVy8u/t/lzkwmU19fv6IcM5nMmsvuL3eXOpEQ0zeFafJB00Ou3PYBTV1JobAohy/1yTESExPnzZsnEolSUlJu3rxpa2uLn/1LTk6OjIykUCjp6emqqqqampp37twRi8VCoTA4ODgiIqK8vHz8+PE0Gi0qKiojI2PatGmVd/vL3Q0MDKQb++mlgh6ehmrqME0+aGKgLisVNXWV2KfMLn10pbtbFov1/fv3x48fv3v3rlu3bps2bdLS0kII2dvbJycnh4eHf/v2zc7ObuDAgRKJJCQkJCIiokWLFps3b46Li+NwOM7OzlXW5V/u3qpVKylmLs7h//jGcR4k5VoPgBzAeiXK5l5QrttYY22D5v79/fNLpliMOQ7QJzoIAPUGZ0WUTTsH7Tfh9ME+1Z5z8/Pze/369e+3m5qaFhQU/H67rq6u7GaxqPD69Ws/P7/fb8cwDMMwFZUqToTcu3cPb7ZX6WVY8RL/NtKOCYA8QHtZCV3e93PIdFND86pnlWMwGDwe7/fbhUKhqmoVrWwVFZW6jKxoJB6Px2Awfr9dIpFIJBIKpYoGhJmZWZX1GiH05j5dlUpy9oBODNAkQV1WQj+/lWcklruNa3aL++FEAsm903mjF1kSHQSABoJxckrIuqOmuhYl5gGd6CDEuHIgq7+3MdEpAGg4qMvKqfsQA0a+4PNrJtFB5O12YE6vEYZ6xjKZCAkA+YB+DGX26laRrqGqfV89ooPIye3jOa7DDE1a0IgOAkCjQHtZmfUdbUzPF7wILSI6iMxx2KLgHZn2ffSgKAMlAO1l5ZcQxXr7gN5rhJFtDx2is0ifUCCJvktnFgoGTDTRafajtoFygLrcLHDZ4ui7xcW5gvZOWq07a+kaKUP9yknl5qZzY5+W9Bph2Hz6akBzAHW5GSkpECS+KU1PYJMpJOsOGlSaiqYORduAIm4qa5NKUClDWF4qIpHQlyiWiRWtraNWl95SvugcAMJBXW6OGPmCvExuOUtcXioik0llJVKegi4tLc3AwEBfX8rXQGtqU8hUpKlD0TGgWHfUpNLg7AhQTlCXgfStX7/ew8Nj0KBBRAcBoEmCFgcAACgWqMsAAKBYoC4D6TM2NqZS4Yo7ABoI6jKQvqKiInzdKQBAA0BdBtJHo9HIZFi9CYAGgroMpI/H44mbzKBoABQO1GUgfdra2tBeBqDBoC4D6SsrK4P2MgANBnUZSJ+pqWmVS1IBAOoC6jKQvoKCAqFQSHQKAJoqqMsAAKBYoC4D6dPQ0IDzfgA0GNRlIH0cDgfO+wHQYFCXgfRpampCexmABoO6DKSvvLwc2ssANBjUZQAAUCxQl4H0GRgYwPhlABoM6jKQPgaDAeOXAWgwqMsAAKBYoC4D6YN58QFoDKjLQPpgXnwAGgPqMgAAKBaoy0D6TE1NoR8DgAaDugykr6CgAPoxAGgwqMsAAKBYoC4D6YPxGAA0BtRlIH0wHgOAxoC6DAAAigXqMpA+Go0G83wC0GBQl4H08Xg8mOcTgAaDugykz9DQkEKhEJ0CgKYK6jKQPjqdLhKJiE4BQFMFdRkAABQL1GUgfVpaWtCPAUCDQV0G0sdms6EfA4AGg7oMpM/ExASu9wOgwaAuA+krLCyE6/0AaDCoy0D6oL0MQGNAXQbSB+1lABoD6jKQPl1dXRiPAUCDkTAMIzoDUBKDBw+mUqkkEonJZKqrq+P/p1KpoaGhREcDoCmBRg2QGj09vfT0dPz/XC4X/8+kSZMIDQVA0wP9GEBqJkyYoKamVvkWCwuLyZMnE5cIgCYJ6jKQmrFjx1paWlb8iGFY3759K98CAKgLqMtAalRUVLy9vSuazJaWlj4+PkSHAqDpgboMpGns2LEtWrTAG8t9+vQxNzcnOhEATQ/UZSBNFApl3LhxVCrVyspqypQpRMcBoEmC8Rj1JuRLGAWC8lJYj6Nq3Tp62tp86tSpk4Cpn84sJzqOIlJRQXrGqnrGcEkkqBqMX66fqLvFqXFsNQ2ylh5FApUZNIi2PiXrO0dLn9JtgJ6NrSbRcYDCgbpcD08vF6hrq9r3MyA6CFAGYpHkyYXcHp761h2gNIP/gP7lunoeUqSpB0UZSA2ZojJ0llX0XUZ+Jo/oLECxQF2uE0YBn0kXdu4NRRlImesIk4+RJUSnAIoF6nKdMPKFZDKJ6BRACekaUzOT4Owo+A+oy3VSXirSN1Grw4YA1A+ZTDK2Ui8rERIdBCgQqMt1IhEhAV9CdAqgnMpKhCQSfBsD/wN1GQAAFAvUZQAAUCxQlwEAQLFAXQYAAMUCdRkAABQL1GUAAFAsUJcBAECxQF0GAADFAnUZAAAUC9RlAABQLFCXAQBAsUBdlrcRo/oHHj9c33slfU3g8/kVP94IvTzA3ZnD4TRyP9VJSU0e4O785s2r+u6/Ss9fPB3g7vzzZ2bFLfn5eXn5uTI63C/CH9wePXZQQUF+dRuIxeIvXz41/kC/PCgAGgzqchPw8NHdJX/M5PG4CrKfRsrJzZ7iMzI5OUk+h6NS1TQ1tVRUqn2rHzi00//wnkYeRc4PCig3WHe1CahLC1ee+2kksUgkz9XLBrkPHeQ+tIYNBNJ4WuT8oIByg7osQ+EPbt8Mu/rzZ6aWlnYv135zZi/W1zdACLHZZbv/3BwV9VxXR2/SpBmjRnojhAQCwfkLpyIjHxUWFRgaGg32GDZzxgIymfzw0d3Df+9FCI0eOwghtH7d1qFDRuD7Dzp99OWrSC6X4+zUc/GiVaamZvjtSV8Tjp84nJycRKOp93Ltt2jRSh1tnRr2U52MzLSr188nJydZWVkvX7q+SxcH/Pa8/Nxjx/xjP8ZQqWrt23WcPXtxxw62CKEvXz5duBj0JeETQqhjB7uFC1d0aN/pl33m5efOmOWNENq+Y8N2hIYMGb5h3bYaDldYWHD67LGYmKjycnaLFi2nTJ6FF1kej3f4yN7o6JcIIXt7xz8WrzEzM3/79vXJoH9yc7PNzCxGjvAeO2bi3v3bHj26hxB68ugthUKpcoNnz58ghAa4OyOELl+6Y25m8eDhnVu3rqdnpKqra3R3cf1jyRo9PX28+yjy2ePx3lNPnw6gM4rbteu4ZpWftbVNDQ8KgAaAfgxZORd84sDBnS2sWq5e6TthvE9eXg5FVRX/1YOHdyhkysoVm2xatTn8997Pn+MQQmQyOTY2xrVXv0ULV3Zz7H7x0pnQm1cQQj26954w3gch9Ofuw0cOB/Xo3rviEEVFhfPm/DF82Ng3b18tXzm3jF2GEMrMTF+9ZqFQKFy3duuMafNev362ffv6mvdTnYuXTjs6uKxYvkEgEPhuXsVmsxFCdHrx0mWzS8tYfyxZs2D+MqFQuHzF3IyMNIRQfn4uX8Cf5jN3xvT5+fm5GzYu4/F+XbnO0MDId9MuhNCsmQuPHA7ymTK75sOJxKJv3xJHjfRetGCFjo7u7j1+X78lIoQuXzn76NE973FTFsxfVlrKUldX53A423asp6pSV6/y6+Xaj04vQgiNHTPJw8ML33+VG/hMmd3N0cXczOLI4aAjh4MMDYwQQklJX6ytbRbMXzZi+Nio6Bf7DmyvCPn1a8L16xdWr/bbsf1gUWHBn/u21vygAGgAaC/LRHFx0cVLZzw8vDZt2IHfMmni9IrfDvYYtn7dVoRQ3z4DJkz0fP7iib29I5lMPhYQXDE/em5e9stXkRPG++jrG1hYWCGEOnXqrKurV/koGzfs0NDQQAg5dHXa5Lfy5s2rM6bPu3jptIqKyv59R7W1tBFC2to6e/ZuiY//2LVrt+r2U53lS9cPGTIcIdTSutXiP2bGfoxx6+d+4WKQvp7BoQOBFAoFIeQxyMtn+uh74WFLl6wZNMizogh26GC7avXCLwmfXJx7Vt4nlUpt364jQsja2qaiAV7D4SzMLc+dCcGfFk/PUWPGDYqKet6po11efq66uvqUyTMpFMowr9F4Dy+fz+/bd6DHIM+KfbZv19GmZWv8/yVMxu8bWFlZ6+rqMUrolcOsWrmp4oWgUCgXL53h8/lqav8uWLN7118GBoYIobFjJx0L/ItVytLV0a3uQQHQAFCXZSLu0wexWDxqhHeVv60oizQazcLCqrCoAP+xpIRx/sKp9x/elpWVIoTwwloXrq59zUzNP336MGP6vE/xsY6OLhX3dXFxRQglf0/q2rVbfR+Fjo4u/h8bmzYIoaKiAoRQTExUYVGB1/C+FZsJhcKiwgKEEIlEevX62fWQiz9+ZOB/MEoY9EYeDiGUmvb9XPAJ/JSaWCxmMOgIoUHunhERD9dvWLpk8erWrdsihCzMLe3s7C9eOk2jqY8YPpZKpf6y/1o3qPyIboZdffI0vLAwX02NJpFImMySim4iGk0d/4+pqTlCiF5cpPv/yQGQCujHkAkmk4EQMjY2rXVLFTJZLBYjhBgM+vyFU2M/vps9a9G+vf90aN9JLBHX/YhGxibl5WyEUHk5W09Xv+J2bW0dvP3e0IeCEEL4YIZ/c5bQXV37Bp28UvEv+OyN5cvWI4TOXwjasnVth/a2u3f6L1ywAiEkwRqy+Fblw32Me794yQyhQLBu7dbtW/fr6Oji++zRvdefe/5mlNDnzJt08NAukUhEIpH27jkyZPDw4ycOT585Nj7+4y+7rXUDHIZhm3xXXLp8xnPoyH17j3oM8qrugahSVBFC9XqZAKgLaC/LhKamFl7CTExqL824O3dDS0oYAf+cw9tlJiZmWdk/Km9Q8+n+khKGpYUVQsjIyKS0lFX5doSQVqWmdyOHDWhr67BYTGtrm19u5/P5l6+cHeY1+o8lq/HzdY05SoULF4IsLKz27D6Md5uo/39bFS/NLs49Q29eORb4l6mp+TSfOVpaWiuWb5gwYdrmLav9Nq+6djUcb7ZXqG6Dys9JfPzH2I/vfDftwk8w5mT/lMoDAaDuoL0sE/b23RBC4eG3Km4RiUQ136W0lKmnp1/xZZlVyqwoFngxqqHNm5KanJOT1a1bd4SQnZ39p/jYihNuL19GIITwTs9a91MX3bp1T0iIT/7+teIWLpeLEOLxuHw+v/3/D8BglTIRQhKJBCFEVaUihCr+Wqip0fCv/3U5HKuU2bZNe7woCwQCDpeD71MgEOAt6/HeU42MjFNSvlUMBLQwtxw7ZhK7nJ3/21UeVW5Ao6kzGHR8txXJ8f7iXx5IDer1oACoGbSXZcLKssXwYWPu3rtZWspycXFlsZh374b6+58wN7Oo7i4ODs5ht66fORtoZ9f11avImJgoiUTCYjF1dfXsOnclk8lHjx30HDKSL+CPHDEOv8vuP/369RmYl58bduuahbnl8GFj8QEGkZGP1m9cOmL4uMLC/ODzJx0dnB26OiGEqttPvcyYPv/t29dr1y3Bz0m+exctloh37Tikq6vXunXbm2FXDQwMy9ns4PMnVVRU0tNTEUKtWrdVUVH56+8//1iyxtHB2cTE1MLc8vqNizR19dJS1tgxk2o4nIOD86NHd8Mf3NbR1g0JvVRWVpqZkYZh2M2wq1HRLzwGedHpRcXFRR062AqFwhmzxvV382hl0+b27RAtTS38PGeF6jboat/twcM7/n/t6dLZQVtbx7ZTFyqVeiro6LBhY9LTUy5fOYsQykhPtfzv3n7x+4OqOE8IQH1Be1lWVq7YOHfOkuTkpMN/771376aLiyuFXNNfwX59B06fNvfW7ZDdu32FImHA0XPW1jZht64hhCwtrFav8s3K+nE04ODz50/w7Qf091BX1wgI9A8NvezUrftf/ic1NTXxAQb79x4VCoX7D2y/dv2CxyCvHdsP4qMLqtxPfVlaWB09csbOzv7S5TMBxw4xWSWD3P8d3rDZd486TX3Hzo3XQi4sWrRyms+cR4/uCoVCczOL9Wu38vn8t29f4/28fn57NDQ0jwYcfPjoLt7TUp3ZMxe5OLv+c/TAkaP7nbr12LZlH51RHPfpg4WFlVAgCDz+1/3wW2PHTpo4YRqXx3V0cHka8eDwkb0UVdU9uw/TaLTKu6puAw8PrzGjJzx/8eRk0D+JSZ+NjU38fHenpH7btn1dbGyM/6ETPXv2uRl2teanpV4PCoCakeAipbqIe8YsKRK5DDEiOghQQiH+mRNWWmnpwZdX8C94KzRfy1bMzchI/f32Xr3cNq7fXtU9AADyAHW5+dri96dQJPz99spjHgAA8gd1ufkyMjImOgIAoApw3g8AABQL1GUAAFAsUJcBAECxQF0GAADFAnUZAAAUC9RlAABQLFCXAQBAsUBdBgAAxQJ1GQAAFAvUZQAUC4fDef/+/cmTJ6dOnUp0FkAMuA67TtTUSVQa/A0DMmFgSlUhkxITExMTE6OjozMyMsrLy0tKSvD1tEAzBHW5TvSMqYlv6V3dDIgOApRNeamopIA/Zdo4Pp9Pp9PFYjE+WTaJRNLR0SE6HSAG/EGuE7NWNISQSNiQVUQBqEF+JseiI0ldXb2oqEgikeBFGaeuDhP7NVNQl+tERYXUa7jh04u/rhcHQGMUZnE/vygZMtnmypUrHh4elRdYwTBMIpHMmjULIVRSUhIdHc1mswkNC+QH1iuph4KfvDsncru5G+oZU7X0VOGZAw1EQox8Ppsp/P6eNXm9NZn8bxv57NmzISEhhYWF+I8fPnxgMpl6enoMBmPr1q0SiSQgICA1NfXt27eurq5t2rQh9DEAGYK6XA98Pl8ipLy8k/39c6EqWYtGlebXTLFYzOfzqVQqvvazguNyuTV8yxYKhSoqKmQyWb6hZIvD4fxvVWwMQ//f4UAikTQ1NfFFwWk0WuWOiOoYmFFJJGTVXt2xv/4vv3r79u3+/fszMzNVVVVjYmJ+vy+dTj9//jyFQlm6dGl0dPTjx49HjBjh5OQkhUcIFAbU5VpgGEYikdhs9pIlSzAMO3/+fFFRUUlJSfv27aWy/+fPn2dnZ/v4+MTExGhpadnZ2UlltzI1b968L1++rFq1asKECVVusH79eg8Pj0GDBsk9mgxxOJw5c+akpKRUvlEikXz8+BH/f2xsbMuWLY2MjObOndu1a9elS5c27EB0On3NmjXZ2dlPntSyNi6bzX727BmFQvH09Lx+/fq9e/fmzJnj5ubGYDAMDOAcdVOGgaoIhUIMwxYuXNivXz8Mw9hs9pcvX6S4/+TkZAzDEhMTV61alZSUJMU9y1R+fv64ceMcHR2dnJwCAwOr2+z9+/e5ubnyjSYPLBZr4sSJTv/1+vXrXzb7+fPn2bNnMQyj0+nbt2//8OGDfOIlJCR8/vwZw7CgoKA+ffrg77GYmJi8vDz5BADSAu3l/+HxeDQabceOHeHh4U+fPtXS0oqNjZXuN0SxWEwmk6dOnWpgYPDPP//gP0px/zKVmJjo6+ubnZ2N/zh+/Pj169cTHUreiouLlyxZkpaWhv+op6dna2sbHx8/ZMiQoUOHduvWrfLGGIbduXMnOTl53bp1379/T0xM9PDw0NLSkkNODocjFou1tbUPHToUGRkZEBBgY2Nz//59AwOD7t27N6F3XfPU3OtySUmJvr7+1atXX716tWbNmlatWsXFxXXu3FlVVVW6B0pISAgMDNywYUOLFi0yMjJatWol3f3L2pMnTw4dOlRcXFxxy4ABAw4cOFDlxrdv327Xrp2tra0cA8pPXl7ekiVLfv78iZ+aw/sTHj169PDhw6ysLLxAd+rU6Zd7MZnMo0ePqqiobNq06f3790ZGRvJ8D+AtgLt37z569Gjx4sW2trZ//vlny5YtJ0+eXJcOcSBn5G3bthGdQd7YbDaVSn3+/Pm8efP09fXt7OwoFMr48eNNTEwQQubm5lJsTXz69Ck9Pb1FixbR0dG9e/fGu4/19X8926P45s6dy2QyK9+ir68/cuTIKjc+e/asiYlJ69at5ZVOrrS1tV1dXd+8eVNeXj537lyEEJVKtbW1HTly5JAhQ/Ly8s6ePfv27duMjAwTExNdXV38XjQarV+/fn379kUIpaen79y508LCwtraOjMzU09PT9aZ8UsHO3To4OXlZWxsjFfq79+/u7i4kMlkHx+flJSU3r17Q41WEM2lvSwSiSgUSmJi4ubNmydOnDhx4sS0tDR9fX0ZnR4pLS3V0dEJDw8PDQ1dv369tE4SEmjUqFFZWVkVVwZLJJIuXboEBwdXuXF2draOjo7SX67m7e1948aNKn+VnZ19//79Bw8e6OjoeHp6enp6/l58ORyOhobG6dOnL168eOnSJQsLC4lEQsi111+/fv3y5Yu3t7eKisqwYcMcHR137drFZrNVVFQ0NDTknwcof13Oy8vz8/PT1dX19/f/+fMnhmEtW7aU3eHYbPamTZs0NDT27t3LZrPl05koN0OGDGEymWKxGMOw1q1bh4SEEJ1I0SUmJj548ODjx4+GhoZeXl6enp6/b1NaWiqRSPT09Dw9PTt06HDw4EECx0qWlZV9+/bNxcUlIyNj+vTpI0aMWLdu3Y8fPzAMs7GxISpVs0P0iUfpk0gkQqHQ19d32bJlGIbl5OTExcXJ+qB5eXlHjhzB//P7CXqlMXz48JycHAzDBg4c6OHhUd1m9+/fj46Olm80RRcVFeXr6+vk5LR58+b3799Xt9nLly/5fD6fz587d+7jx4/lm7EK+fn5GIZ9/Phx7Nixx44dwzAsLi4uJiYGH7AEZESp2st37ty5efPm33//raam9uzZs759+8qhuZqfn29mZrZ8+XIXFxcfHx9ZH45AUVFR9+/f37NnT61bnj59ms/nL168WC65mhIMw8LDw+Pj46OiokaNGjV69Gj8rMbvPn78mJKSMnHixGfPnqWkpHh7exM+JBkfsBQbG4uPw5s6deqzZ88EAkHfvn2hu0O6mnxdzszMvHHjhpubm4uLy40bNzp06NClSxf5HPrNmzcbNmwICAjo3LmzfI5IrFWrVk2dOrUuAwfpdDqXy7WyspJLriYpPz//9u3bt27datu27ejRo93d3avbksViXb161cTEZMyYMc+ePTM1NVWcgS6fP3++evVqjx49Ro0aFR4ezuVy3d3d5XAaU+k11br84sULNTW1nj17BgcHU6nUMWPGVJ7zRaZiYmKysrK8vb1jY2M7dOigZD3I1UlISDhw4EB1J/pAg0VHR9+6dYvL5dra2k6cOLHmRnFUVNTx48cXLlzYu3fvtLQ0hZoi4+vXr2FhYQ4ODl5eXmFhYaWlpcOGDTMyMiI6V9NEdEdK/aSkpGAYduzYsZUrV6anp8s/QFxc3KJFi75//y7/QxNrzZo1r169quPGLBZr/fr1Mk6kVFgs1qlTpwYNGrRu3brY2NiaN+ZyuRiGHTlyxN3dnZBPQa3S0tL+/vvvR499UldvAAAgAElEQVQeYRgWEhISFBRUVFREdKimpMnU5aioKGdn5wcPHuBn9uR89GPHjk2ZMqXiI9HcxMfHz5w5s153GTJkSGFhocwSKa0nT57MnTt3woQJ4eHhtW7MYDDwa6xXrVq1Z88exXxzZmZmBgQEPH36FMOwK1euBAUF0el0okMpOoXuxygrKzty5IhEItm8efOPHz9atGgh59Gd+fn5WlpaZDL50qVLPj4+cusqUTSzZs1auXKlvb193e+SmppqZGQEXY0Nk5qa+vjx45s3b86ePXvKlCm1bs9msx8+fOjm5mZsbOzv7z948GDFPOeRmZkZHh7etWvX3r17BwcHq6iojBkzppn0BNYP0X8YqpCXl3f9+nUMw5KSkkJDQ/l8PiExzpw54+XlpZhtEHmKjIzct28f0SmaIwaDcfDgwV69egUFBdX9O+KNGzeWL1+OYVhRUVFiYqKMMzbct2/f/vrrL3wMa2Bg4M2bN2HsXQXFqstCoZDD4Xh5eYWEhBCV4efPny9evMAw7O3bt0RlUCg9e/ZswJ/GgoKC+fPnyyZR88LlcgMCApycnE6fPl2vO5aUlPj4+Gzfvh3DsLKyMpkFlIL379/v3LkzKysLw7BDhw69efOG6EQEU5S6fPXq1X79+nG5XGL/ZqakpIwaNSozM5PADAolICDgzp07DbvvtGnTEhISpJ2o+Tp+/PiAAQPu3btXr3vhJ9wiIyOnTJny6dMnmaWTmps3b/r6+uInD8+dO4df2NLcENy/HBUVpaam5uzsfP/+fTc3NwJ7mo4ePTp//nwmk1ndOP9m6NWrV6GhoYcPH27Y3fFWdrPtlJcFFot16NChtLS0VatW1XcG2m/fvrFYrB49ely8eNHQ0LDKK8IVSnl5+enTpykUyuLFixMSEkpLS3v16kV0KDkhsi7fvn07IiJiy5YthA9yXLFiRdeuXfE1LgFOJBL17t27yqWM6g5fnk56oQDCK6y/v3+rVq02btzYgLunpqaeO3fOw8PDzc3t+/fvTWJSrczMzEOHDllaWm7YsCElJcXMzExbW5voULIk/yZ6UFDQokWLMAwrLS2V/9Ery8nJuXHjBoZhRJ1aVGTbtm1r/Lwif//997lz56SUCPzHgwcPPDw8vn792pid/PXXX15eXk1lRCM+YdbLly/d3NzwWWhYLBbRoWRCfnVZKBSyWCw+nx8QEMDj8eR23OpwOJyKWXjAL/bu3Xvt2rXG70cgEGzatEkaiUAViouLp0yZcubMmcbsJC8vD++DXrdunSLMlFRHeOalS5fOmzeP8Bae1MmpH+Px48ebN2+OiIhQkLGKmZmZJiYmMNlKlUJDQ5OTkzdt2kR0EFAnf/75p42NzeTJkxu5n0+fPoWFhW3fvr2wsJDD4TSVWT1jY2NtbGwMDQ137NjRvXv3oUOHEp1ICmR+mUZsbCxCiEwm4+s9y/pwtSorK+vRowcU5erExMS8e/dOukX52LFjv6x1AqRo48aNGhoajX/JHBwctm/fji+/snr16gsXLkgpoGw5OTkZGhoihIYPH/7q1Ssul1taWhofH090rsaRXVOcx+MNGzYsIiJCdodogOjoaBi+Xp1Pnz7NmjVL6rtNTk6eNGmS1HcLKgsLC9uxY4cUd5iRkYFh2L59+y5fviwSiaS4Z1njcrmzZs0KCAggOkjDyaQfo6JxxOVyzc3Npb7/hsnLy0tKSqphQsVm7sWLFydPnrx06ZIsds5isUgkktKvLEWsu3fv5uXlzZ8/X4r7LC8vv3XrVu/evW1sbFJTU9u2bSvFnctUUVGRsbHxlStX8vLyFixYoKmpSXSiepB+P0ZMTMy4ceM0NDT09PQUpyhnZmb+8ccfUJSr8+HDh7CwMBkVZYSQrq5uWlpaUVGRjPYPEEIjRoyIiIhITU2V4j41NTWnTp2K9zXv27evCZ11wJeXnTx5sqmpaXh4OEKooKCA6FB1Jc32Mr6cwZMnTzw8PKS1T2nhcrnq6upEp1BQT58+DQkJOXHihKwPNGnSpJ07d7Zr107WB2q2Xrx4ERkZiXcTy8KXL1+6dOny6tUrNput+Fem/GLTpk3GxsYrV64kOkjtpNZejo2NXb16NUJIAYvyt2/fysvLiU6hoG7fvv3kyRM5FGWE0NWrVzU0NIRCoRyO1Ty5ubnl5eUJBAIZ7R9fDMjR0TEqKuratWsyOoqM7Nmzp2vXrgihrKwsorPUQmp1OTo6OiAgQFp7k6LCwsKVK1cSfkmhYtq7d29eXt6+ffvkdkRLS8uoqCgWiyW3IzY3paWlP378kOkhtLS0du3aNWzYMITQli1bwsLCZHo4KRo4cCBCiEKhuLu7K3J1lkJdvnr1KkJo6dKl0sgjfRkZGQcOHCA6hSJauHBhmzZtFi5cKOfj9u/ff8yYMSKRSM7HbSYsLS3ZbLYcDoQPe129enViYiKPx+PxeHI4qFSYm5uHhoamp6dLJBKis1StsXV5xowZPXv2lFIYmejRo4dizhFOoKKiooULF86ZM2f8+PGEBIiMjMzPz4dBzbJAoVB0dXXldjhdXV0/Pz81NTWBQDBu3Dj8egXFp6en5+bmRiKRhg4dqoDvw8bW5d27dyvydUESieTIkSNEp1AsERER06ZN27lzp4uLC4ExrKysEhISHj58SGAG5VNeXv7mzZvWrVvL+bj4IMhDhw69evUKIVRSUiLnAA1DIpEuXLhw8uRJooP8quF1+cCBAzweT8HXohcIBE3u7IRMHT58+NGjRw8fPsRHERGrT58+r169Ki0tJTqI8oiOjibwQmQbG5sVK1YghOLi4nx9fZvECV5jY+N169bl5ubKp/OnjhpYl5cuXTp9+nTFn1pXRUVl1apVRKdQCHw+f9u2bYaGhvv37yc6y//s3r0bw7CvX78SHURJREVFjRo1iugUaODAgX379n337h2fzyc6S51YWFisXLny48ePRAf5f0RfcAjk4eXLl66url++fCE6SNWKioq8vLwEAgHRQZq2p0+frl27lugU/8Hn84cOHfrz50+ig9RJXFxceXk50SmwhlyHHR4ebmxsTGzXZL2EhYV16dKlCV0/KnWHDh3Kyspq8LIj8pGfn5+Xl9e5c2dVVVWiszRVffr0efLkiaJdP1VYWBgbG+vp6SkSiSgUCtFxaiKRSPLy8iwtLYkOUs9+jMjIyOjo6CZUlBFCOjo6CtivLx/Z2dkLFiwwNzdX8KKMEDIzM3N0dBQIBDt37iQ6S5Pk7++/a9cuRSvKCCETExP8ysCDBw8q+EhnFRWVGzdunD9/nugghK4jJTfPnj1zc3NTUZH5pKYK5erVq1euXDl8+HCrVq2IzlIPt27dKigoWLBgAdFBmpKrV68KBILp06cTHaQWu3btmj9/voGBgcI2nCUSyZYtW3bt2kVsjHrU5aioqDZt2piZmck4EmgsHo+3Y8cOfX39tWvXEp2lIfBVAe/fv49fUQZq9s8//5SVlTWVGYX4fH5CQkJOTs7IkSOJzqK46tqEfPHiRWhoaNMtyjNmzMjOziY6hTyEh4e7u7uPHj26iRZlfMw/PjWoQg0dUUzh4eFmZmZNpSgjhNTU1JycnOLi4mR9sXiDZWZmRkZGEpuhru3lFy9e9OzZU01NTfaRZCIlJSUwMNDf35/oILK1du1aGo2mNF20+IS/GRkZTasrRm7OnDnD5/MXLVpEdJCGKCsr09bWjo2NdXJyIjrLfyQkJBw4cCA4OJjADHVtL7u5uTXdoowQateuXeWi7OXlRdQlyDLy5MmTGTNmeHp6Kk1RRgjho2iYTOaCBQuaxEUK8rR582aEUBMtygghbW1thNDp06cfPXr0y6/mzZtHUCiEEGrdujXhk2LWqS5PmTJFAS8hb4Dr16///PmzX79+hYWFXC5XYb9J1YtYLF67dm1ERERwcDA+XZaScXR0nD9/fnx8PJ1Or3x7v379mmdHh0gkWrFihaur6+zZs4nO0ljHjh3DL0+rfAVKamrqvXv3iIqkoaHh4+ND1NFxtdfliIgIBwcHvMuvqQsJCRk9ejSHw8FnyleCuhweHr5kyRJPT8+9e/cSnUWGnJycnJ2dBQLBrFmz8JcPfx2fP3/+7ds3otPJVXx8/NKlSxcvXuzl5UV0Fulwc3NDCE2fPv379+8IoV69epWVlYWEhBCVh8lkRkdHE3V0XO112d3dfd26dXIJI1tjxozJyMioGC3HYrF+/vxJdKiG43A4y5cvf/PmzfHjx5Wymfw7c3PzlStXPnv2DCGUk5ODX7MQGBhIdC75uXjxYlhYWGBgYPv27YnOImXXrl179+7d4MGD8Un9s7Ky7ty5Q0iSFy9ePH36lJBDV6ilLvN4POkuF0aUwYMH/9I6xjAsISGBuESNcvPmTR8fn/HjxytTb3Jd2NvbDxs2bMCAARXnqxMTEwn/FMnHggULMAzbtm0b0UFk5fr16wwGA/8/i8UiasYxa2vrSZMmEXLoCrXU5aCgIHzivqbu8ePHXl5eRkZGFZ9nEomUlpZGdK56o9PpCxYs+Pr1682bN/v06UN0HAJ4e3uXlZVV/MhkMoOCgghNJHMfP350dnaeN2/etGnTiM4iQ/h3IByJRMrLy8PXS5UzR0dHwr+O1FKXy8vLFWF6KqnYtWtXYGCgl5eXoaEhXp1FIlETWiIXIXT58uXJkyfPnz/f19eX6CyEKS4u/uWWHz9+KHFpPnXqVGBg4Pv3752dnYnOIkP4WvX4rD34LUwm8+LFi/JPsn//fsIX06nlasj169fLKwlCCImEEi5bhiu7GOm1WLdqa35+/pUrV2JjY4VcccrXbA2qoeyOKC1sNnvr1q0dO3YMvRaOECorqdv7BkPaBgp6wWt12EwhhpFq2MDMqBVPiycSiXg8nlAoxDBMRUXl6cOoPj09FGHGGenatGmTnZ2d//5ANlPc4J2oUlVomoo+CUFERMTJkyfj4+OzsrIwDBNwKDwet6SIF3otfPDgwXKLkZmZmRifzi1DCMmkNKtSSTRNcq2b1XRdSUpKCpfLtbe3l3a2Knx9V/r5FYuRL1DXqj20VGASCV8gUPwppHECgYBMJpPJ9XtyjCzUslM57bpq9RppJLcntsFehBZ9/1hm1lKdnlfLpL0YhmESCYZhEgyT4P+RSDQ0NOSVVE5EIhGJRKrvi/47NQ2ygCu2c9Vx9jCQUjRZyU7hxD1j/vjK0TMjcUrFYrFYzjMx4W+nxj/n1dHQIZezxLY9tXsMrak5WFNdXrVq1ahRo/BRLDL17jGjOFfo4GagbQBzPEqZUCApKeBHXsqdtM5aW19Bn16hQBLkl9F/gpmRJY2moeh/P5oiNlOYHl9WViIYOkNxp1JIjS+Pe1bSc4SJnhGV6CwyVM4SZiaxC39yR8wzJ5Gq/mpYU10+derUtGnTZN2ijHnIKKWLeg43kelRwOU/02ZutVFTV8Sqd8o3fdQSa3XNJtbl0uQkvWWW5PGGzlTE0pz6if35FctjurL1RFUnJY6VnVw+coFFlb+tqddp3rx5si7KJYWC4hw+FGU5GDDJPOouvQ4bylvMQ7rzYCMoynJg21NPVZ2cmVROdJAqxL9iDppWdZFSSu0cdXUMqSmfyqr8bbV1OS0t7ffr1qWuOIdf80keIC16xtSML4r4gcz+zlXYDhblQ6WRC37wiE7xK0a+gFsmru5LvbKiaZILMqs+lVJtXX727Fl6erosUyGEEJslNm7RNM68NXXqWhRDCzVuWcNP68sImULSM27CU2I1LYYWajyODIc8NQyzWGjZRtlO29bKwFyNz6v6taj2y2OnTp3kMOpIyJcIFe6Pt9IqzuGRFG+4VHEuHyHlXzRHQUhEGKeU4MG5v8PEWLnipZI1iRixqxnwWm1d7t27tywjAQAAqFq1zacTJ06w2Wz5hgEAAFB9XT516pSWlpZ8wwAAAKimLnO53I0bN8o9DAAAgGrqsrq6+rhx4+QeBgAAQDV1OTs7OzQ0VO5hAAAAVFOX09LSoqKi5B4GAABANXXZ2toa+jEAAIAQVY9fbtWqVatWreQeBgAAQDXt5U+fPkVGRso9DAAAgGrqcmJi4qdPn+QeBgAAQDV12dHRceDAgXIP0xC79vhNn1l7V3h+fl5efq5cEtXi9yThD26PHjuooCCfuFBNWHZO1gB354hImc99KF1sNvt7yrfKt8DbQA5k8bSLxeIvX6Tciq26Ltva2jo4OEj3SATKyc2e4jMyOTmJ6CBVJ6FS1TQ1tVRUFG9KISAzc+dPevDgduVb4G0gB7J42g8c2ul/eI800v1P1ef93rx5g2FYr169pHswoohFohqWZWkADMMaNldslUkGuQ8d5D5UStFA0yAQCH65pWFvg5zcbAtzy+Y2c3GDSetp/88++bUsR9kAVdflL1++KHJdjnz2OPj8yYKCPJuWrSWS/01g+uDhnVu3rqdnpKqra3R3cf1jyRo9Pf28/NwZs7wRQtt3bNiO0JAhwzes2yYQCM5fOBUZ+aiwqMDQ0Giwx7CZMxZULLYY/uD2zbCrP39mamlp93LtN2f2Yn19g1lzJrSyaWNj0+Zm2FU+nxdy7aGWllbcpw+ngo6mpX3X1zdwdHCZO2eJoaFRvZLs3b/t0aN7CKEnj95SKBSE0OPH9y9dOZubm21oaDTMa8zUKbNUVFRSUpOXLpu9d8+Rk0H/pKV9NzU1XzBvWe/eMl96UTExmSUBxw5FRb+gUtUcHZwr/yrpa8LxE4eTk5NoNPVerv0WLVqpo62D/+r3l1VbW8djSM95c/+YMnkmvs1G3xUsFvPY0XMpqckrVs7b7Lvn1OmjP39mmpqYTZ06m8Gg37l7g80uc3R0WbPKT09PH7/X7Ts3rodcLC4uNDOzcB84dOKEaWpqajW8ZJOmDC8pYdy6HXLrdoipqdnVy/d+eRvcCL0c+ezxeO+pp08H0BnF7dp1XLPKz9raBiEkFArPnA18GvGAy+XY23f7/v3rNJ+5o0Z6y/1FIJjfltWZGWnt2nX8EPuWRFLp0aP34oUr9fUNqvv01eVpRwjl5eceO+Yf+zGGSlVr367j7NmLO3awxQ/XwqolhUK5dz9MJBT27Nln+bINWlpae/dve/b8CUJogLszQujypTvmZlJYdaXqutyzZ0/pNjCl6GnEw917/BwdnCeM98nPz7185ZylZQv8V0lJX6ytbTw8vEpKGDfDrpZzyv/cfdjQwMh3067de/xmzVzo6OCMv3JkMjk2Nsa1Vz8Lc6vU1OSLl85oa+tMGO+DEDoXfCL4/Kn+boPGj5tawmS8f/+Govrvahrv37/h8Xl7dv3F4XK0tLRiP77bsHGZxyCvMaMnlpWyQm9eWbVm4YnAizQare5Jxo6ZJJFInjwJxw/x6NG9vfu3ubsPnTN7cVLSlzNnAxFC03zmIIT4fP72nRuW/rHW3Mzi7Lnju/b4Xr18T1dXj7iXghgCgWDNusU5OVkTxvuYmVncvh1S8avMzPTVaxba2LRZt3Yri1ly9tzxwsL8QwcDa35Zq8PhcA4f2bti2QaqmtrRgIP7D+zo0sVhs++egsL8Q/67AgL9fTfuRAidCz4ZcuPi2DGTWrZsnZWVee36+eycn5s27KjhJdu2df+69X84dHUa7z1VlUr9/W2AEPr6NeH69QurV/uJRCJ//91/7tsaGBCMEDp+8u87d27MnbPEyMgk8PhffD7Pc+hIWT7fiquouHDkSO8JE6Z9//719JljmRlpgcfOUyiUKj99CKFan3Y6vXjpstmWli3+WLKGRCI9fnx/+Yq5x49daNWqDULoesjFgQMG79l9+OePjIP+uwwNjRcuWO4zZXZRYUFeXs7GDTsQQoYGRlJ5aFXXZXt7e6nsXer4fP7RgIP29o4H9gfgzducnKzUtO/4b1et3FTxhY5CoVy8dIbP56upqbVv1xEhZG1t06XLv53mZDL5WEBwxca5edkvX0VOGO9TVFR48dIZDw8v/HOFEJo0cXrF0ckUymbfPRULp/9z9MCI4WOXLV2H/+js3HPGLO/3H9707TOg7knat+to07I1/n8Mw4LOBHTp4uC3aRdCqF/fgWVlpVevBY8bOxnfYOkfawcOGIwQmjv3jwULfeI/f+zXt2mcnpWiW7evp6WlHNgf4OzUAyFkZ2uPfwtBCF28dFpFRWX/vqPaWtoIIW1tnT17t8THf7SwsKryZRWJapmLfeGCFT179kEITRjvs2//9pXLN7Zq1aYz6hobGxPzLgohVFxcdOnyGT/f3W793PG7GBoa/3X4zz+WrMF/rPIl69jBlkKhGBoaVfk2qLB7118GBoYIobFjJx0L/ItVytLS1Lp37+Ywr9ETJ0zD3zC79/h9Sfjk1K27VJ/jpsGmZWu8LdWpo52mptbuPX7v3kX36tWvuk9frU/7hYtB+noGhw4E4m1nj0FePtNH3wsPW7pkDULIysp608adJBKpU0e7l68j3394s3DBcisra11dPUYJvWKfUlF1XY6JiZFIJK6urlI8klR8SfjEYjG9x02p6HNQIf9vgWehUHgz7OqTp+GFhflqajSJRMJklpiaVr36b0kJ4/yFU+8/vC0rK0UI4Z/k2I8xYrF41IiqvxV26tS5oijn5+f9+JGRk5N1735Y5W0KCwvqm6RCdvbP4uIi/COHc3FxDX9wOzvnJ/4+U6f9e3RTU3O8KNTtaVMqr14/a926LV6Uf3kDfIqPdXR0wV9K/NlDCCV/T8rLz6nhZa2BGvXfBa5UVakIIbyRhRAyNjZhsZgIodjYGJFItHuP3+49fviv8C+axUWF+I+Neclo/70vvbhILBIJBIKKL4j4f/A3cDPXvXsvhNDXbwm9evVr2KcPIRQTE1VYVOA1vG/FLUKhsKiwAP8/TY1WUe5NTc0TEuJl9miqqcvx8fEYhilgXS4szEcImVXVg4Nh2CbfFcnfk2ZMn29ra//qVeTVa+clWNXLZzEY9PkLp6qra8yetcjCwurMmWNZ2T/w2xFCxsamVd6r4jOGECopoSOEZkyf/0uL1cDAqF5JKmOXsxFCenoGFbdoa+vgH3Jjk/9EUqWoIoQkEoVbrE8OCgvz27XrWOWvysvZerr6FT/+++wVF+Ht4upe1gYgkUh4/aUzihFCe3YfNvnvzi0srDIy0yrf0piXDL+vWCLW1dXT0tT68uXTeO+peF8HQqhN63aNfkBNnpamFolE4nA5Df70IYQYJXRX177z5y6tfKOmZhXT0KtSVGX66au6LnfvrqBfi/BPHZNZ8vuv4uM/xn5857tpF352NSf7Zw37uXM3tKSEEfDPOfyvqImJGV6XtbS08ZfHxKSWzzC+JZ/Pw8/GVPbpU2zdk1SGf7bxhhiupIRRUV8ATk9XH39afmdkZFJayqr4Ed9MS0u7upe18cMYKl6a398GtWrAKRwymTx58sxTQUd37fY1MjK5fSdk3NjJLVq0rO9+lE9xcRGGYSbGprXWgRqedm1tHRaLKZ+XsmZVj9pzcHBQzPHLbdq0V1FReRrx4PdfsUqZeIdR5R/x0RpqajT8a2DFxqWlTD09/YqvNqxSJv7M4if3w8NvVWxZXReklZW1qanZg4d3uFxuxZZCobC+SSozNDQyMzV/9+5/M/m9ePGURqO1bduh/k+V0mrXrmNyclJW1o/ff2VnZ/8pPpbH+3cp35cvIxBCXbo4VPeykslkbW2dYvq/LweGYfgXsrpzdHQhkUhht65V3FLxfqiZOk2dTi+u17Fwo0dNcHHuWVLCYLPLfDft+mPJ6gbsRPmEP7iNn2yo4dNX69PerVv3hIT45O9fK26py6tJo6kzGPTKA8Mar+r28rt37zAM69GjhxSPJBWmpmaeQ0feD78l4PO7d+9FpxfHxLzW1zdECNl26kKlUk8FHR02bEx6esrlK2cRQhnpqZYWViYmphbmltdvXKSpq5eWssaOmeTg4Bx26/qZs4F2dl1fvYqMiYmSSCQsFrNFi5bDh425e+9maSnLxcWVxWLevRvq73/i97EvJBJpyeLVW7auXbJ05sgR3hKx+NHjex4eXt7jptQriZqaWuXdzpyxYO/+bQcO7nRxcf348d3rqOczps+v6NQGCKHJk2c+fnJ/+cp53uOmGBoYRUQ+rPiVz5TZkZGP1m9cOmL4uMLC/ODzJx0dnB26OpFIpOpe1u4urk8e3+/m6GKgb3g95OLPn5nVdZJUycqyxdgxk0JvXtnkt7JP7/50evGt29f/3PN3+9p20qWLY0Tkw8tXzmlr69jZ2rdu3baOR9y5e5OOjq6raz+EEAmRCgry69JzqpQyMtNOBR21srJOSIgPf3C7R4/enTt3LSoqrO7TV+vTPmP6/LdvX69dt2TCeB99fYN376LFEvGuHYdqjtHVvtuDh3f8/9rTpbODtrZOr179Gv/Qqh2/zOfzFbAu4ye4qVTq04iHH2Lfdu7s0KZN+//vFDbx890dcOzQtu3r7Gzt/Q+dOHvu+M2wq3369CeRSH5+e/Yf2H404KCJidmA/oP79R04fdrcsFvXb9267tqrX8DRc3/u3RJ269rMGQtWrthoZmZx797NqOgXxkYmLi6uFHLVz1LfPgP+3H347LnjAccOaWpq2XdxtLfvVt8kZmbmlfc5ZMhwHp8XcuPS4yf3jQyN589bWnlACEAIWVpY7dv7z/Hjh88FnzAxNu3TZ8D7D2/xX1lZWe/fe/Rk0D/7D2xXV9fwGOS1cMEKvLOiupd1yeLVfD5/776tmppaI0d48/i8yj0hdbFk8SoTE9OwsGvv378xNDTq22eAsZFJrfdaMH8Zg1F84WKQnq7+4sWr6l6Xuzm6nAs+UXHdOZlMXrdmy+DBw+qVWTno6xt8/ZoQduuamhpt5Ihx8+YurfnTV+vTbmlhdfTImcAThy9dPkMikdq16zhm9MRaY3h4eCV/T3r85P6bt6+GDhkhlbpMqrJnJCEhgc/nOzk5Nf4ANXv3iFMXhTAAABanSURBVCHgoa79DeqwLWisawfSfTa2pGmS67Ct/AT5pY9e0lJNQ7FSKSyxWFwxGKm0rHTDxmUUCuXI4aA63v1HEjvrW5nnLPM6bCs/afHsr+/K3CbUI5XfltVFhQUnjl+UZS7ZyknlJL9jjlpUxSiGqluCnTt3ln0qAEC9HfLfnZb23dW1n56e/s+szPT0lGHDxhAdCkhZ1XU5ISGhuLi4f//+cs8DAKhJ9+69CgvzQ29eFgqF5uaW06fNw8fMAWVSdV3OysqKioqCugyAounvNqi/2yCiUxCv1tNxTVrVddnOzu6XcQIAAADko+q6bG1tbW1tLfcwAAAAqrmuhMlkBgcHyz0MAACAauoylUoNCqrryBsAAABSVHVd1tDQWL58ea2zIAIAAJC6qvuXEULe3s1uBQQAAFAE1a42eP/+/aQk4hcqBQCA5qbaukyn0588eSLfMAAAAKrvxxg6dGhqaqp8wwAAAKi+LpuYmJiY1D4tFgAAAOmqth8DIRQQEPDzZ13X2mgYKo1EodWUAUiRsRVNonirnBtb0TDU2HVDQB2pkEmautW2xohCUshUsqZCJmkbVP2oa6qJampq9+/fl1kqhBDS1lct+lGn9R1AI5WXiuh5fA0thZtOUyzCSgp4RKdoLopzeOqK9x7QN1HN+s4hOoW8Fefw1DSqrsA11eUpU6a4u7vLLBVCCJm0UGv0EmugTkoKeG3sq1hBknAtO6qXMoREp2guBDyxWSsa0Sl+pW9C1dGnCIXSXIpJ8fE5IotqXoua6rKGhkb79u1llgrh7WXLtrSXofVbVA00QMSl/H5jjIhOUQWnQQaJr0uKcuBrk8zFPaOrkFCLdhpEB6mCo7v+k/M5RKeQny+vGXyOuFXnqptKVa9XUuHWrVsMBmP27Nkyi4cQQolvWCmf2F3dDPVNqWQKdDdLE5slZBUKnl7Km7vbhqahoF14EjEWvCPTycPQ0IKmY0glOo4Soufx0uJLVamkfmOMic5Srdx07rPrhT2Hm+gaUdXUFa6zRVoY+fwfSWwBTzRosml129RSl0Uikbu7+4sXL2ST8H8yEss/vWDmZ/DIFOjXkBqTFmrMImEbe80+o41ICt9h9OZ+ceqnci19SlEWn+gsSkVdk6xKU+ncS7tzLz2is9SiOJcf+7TkxzeOlh6FXSKPeSAwhGEYpkKSU3NQS0+VpILZ9dCx71fTa1FLXZY/Prd59THJFIZhtKa2bp6QL90V3wGi0lQU/o/yr3gcsXxaEq9fv3748OGuXbvkcCyEEFWtTn8Cav9iKxQKExISHB0dpZOrNmrq0I/RrKmqwRsAILm1J1q2sujdt7uilZ06tZePHDmiq6s7Y8YMuUQCAIBmrU5/JZYtW4ZhGHy9BAAomdzc3Ddv3hCd4ld1bb3PnDlTRUWxmvoAANBISUlJt27dIjrFr+oxcOr48eOOjo49evSQZR4AAJCfTp06GRsr3NjB+o3HWL58+Z49ezQ1NWUZCQAAmjWFGycHAABy8+jRIzs7OysrK6KD/Ee9u4yTkpICAwNlEwYAAOSHwWAcPHhQ0YpyA9vLL168SE1NnTNnjmwiAQCAPGRmZgqFwnbt2hEd5FcN78coLi42MlLEeXAAAKBJa/jQNwqFsnnzZqmGAQAAOVm2bFlcXBzRKarWqPN+4eHhHTp0aNOmjVQjAQCAbN2/f19TU7N///5EB6laY8djlJWVpaWlWVpaKuAYQAAA+F1cXJzcJvxpmMZewqetrW1raztt2rSioiIpRQIAAFnZsWOHSCSPGUQbQwqXVlOp1IcPH+bl5UkjDwAAyIRIJGKz2V27dnVxcSE6Sy2kfF3J2LFj//rrr5YtW0pxnwAA0Ejh4eESiWTo0KEUioKu2lOZlKciOn369NOnT6W7TwAAaIzMzMw3b94MHz68SRRlGV6HvXjx4uHDh3t5ecli5wAAUBfnzp2bOXMmk8nU01P0NbQqk9XUnUeOHImPj0cIsdlsGR0CAABqsGHDBnwxqqZVlOUxb1FSUtLx48d9fX1NTatd/BUAAKQlJCSkqKho8eLFPB6PRqMRHachZD7Vva2t7cSJE2/fvo0QKigokPXhAADNk1AoRAjFxsampaVNnz4dIdREi7K85/k8efJkUlLSgQMHVFVV5XZQAIDS8/f3T0tLCwgIEIlETeXkXg3kPf/yq1evOnfuLBaLP3/+PHDgQHkeGgCgZG7fvm1tbe3o6Hj//v1hw4YRHUdqiJkXXyAQ+Pr60mi0nTt3KsffNwCA3BQWFpqYmPj7+7PZ7BUrVujo6BCdSMqIXK8EH7xy7969t2/fLl682MLCgqgkAIAm4f3799u3b1+8eLFyj8FViHWkHjx4wGazx48f//Hjx7Zt2yrfXz8AQIOJRKKgoKCSkpKNGzd++vTJ1NTU3Nyc6FCyJfPxGHXh6ek5fvx4hFB5efmoUaPS0tKITgQAIFhiYuKRI0cQQiUlJWQyefbs2QghBwcHpS/KitJe/gXevzF69Oh+/fqtWrWK6DgAAPl5/fp1z549KRTKwoULXV1dZ8yYQXQiAihiXcZxudyHDx+OGTMmLy/v2rVro0ePtrGxIToUAED6srOztbS09PT0evTo0bNnT39/fzKZTHQoIiluXa4gFosvX76cnp6+devW7OzssrKyTp06ER0KANBY+fn5ZmZme/fuffPmzalTp0xMTIhOpCiaQF2uLC8vb+3atZ06dfL19S0qKoJFUgBoWuh0uqGh4b1797Zt23bo0CE3Nzf4IP9OIc771Z25ufnFixcXLVqEEPr48ePAgQNjYmIQQk3rrwsAzQo+ednz588HDRoUERGBEOrateuHDx/c3NwQQlCUf9fE2su/YLFYdDq9devWGzZs4HA4mzdvhtcYAEXAZrO1tLQSEhJ8fX29vb2nTZuWlpZmYGCgr69PdLQmoGnX5cqioqJatGhhbW29YcMGKyur+fPnU6lUokMB0IywWCxdXd38/Pxly5bZ2Njs378/KyuLRCJZWVkRHa2JUZ66XOHHjx+RkZEjRowwMjLatWuXnZ3dmDFjiA4FgHLC+4vZbPasWbM0NDSCg4NLSkoYDEabNm2IjtaEKWFdruzVq1cvXrxYt26dUCgMDAwcOHBgt27diA4FQNOWk5NjaWnJ4/EmTZpEpVKvX7/O4/Fyc3Nbt25NdDQloeR1uYJEIrl27VpKSsqWLVsyMzMjIiLc3d1hQDQAdZSSkmJhYaGpqTlhwgQej3fnzh2hUJifn9+iRQuioymh5lKXK+NwOOfOnWOz2evWrYuPj09ISHB3dzczMyM6FwAKRCwWx8XFWVtbm5iYzJgxg8/nnzhxQldXF4a1yUFzrMuVFRcXnz9/XkNDY+HChS9fvszNzfXw8DA0NCQ6FwAEYLFY79+/t7Gxadu27dKlSwUCwY4dO0xNTZvugkxNVHOvy5VlZ2dfuXLF2tp64sSJDx8+pNPpnp6eBgYGROcCQIZyc3OfPXvWsWNHJyenffv2MRiMpUuXwggKYkFdrlpGRkZYWJidnd2QIUMuX77M5XLHjRvX5FbVBaBKaWlpt2/fxt/eFy9eLCwsnDx5cnOYp62pgLpcu/T09IcPH/bo0cPJyQmfUWXOnDlaWlpE5wKgTjAMI5FIKSkpp06d6tix4+zZsx89elRcXDxkyBAjIyOi04EqQF2un8zMzJcvXw4cONDKymrp0qXGxsZr1qzR0NAgOhcA/1FQUGBqapqenr5582YbG5vdu3d//vy5qKioZ8+empqaRKcDtYC63HDZ2dmxsbFubm56enre3t4WFhb79u1TV1eHkyRA/oqKinJzc7t27ZqUlLRw4cLBgwf7+fkVFBSUlJR07NiR6HSgfqAuSweHw4mLi3N0dNTQ0PD09NTR0bl27ZpQKPzx40fbtm2JTgeUEIZh79+/z8vLGzVqVGJi4urVq0ePHr1w4UIWi0WhUKBR3KRBXZaJ1NTUtm3b8ni8GTNmkMnky5cv5+fnf/v2zcHBAU4egsa4fv16UlLStm3bioqKtmzZ0rdv3ylTpgiFQlVVVaKjAamBuixzAoGASqUWFRXt3buXzWafOHGisLAwPDzcxcXFzs6O6HRA0YlEoj179qSlpQUHByOEDh06ZGtr6+npSXQuIENQlwnA4XBOnz5dUlKyZcuWlJSUCxcuDBkypHfv3mKxuJkvnwPS0tIsLCzU1dXnzZv3+fPnmJgYgUDw4MEDW1vbdu3aEZ0OyAnUZYLx+fynT58K/6+9ew9q6srjAH5uCHncPG5CEiAgaEFXeYigAlrbaknxQWddu2Wwu7XDuFbsS+q0Y7cdtTP7ou46fTjt6oLVqVPtlIpaX+20s6yuSEBHAQV8ULQ8wyMP8k7uzU2yf8RVY4PSTkIu4ff5Cw65lx8z4Ztzzz33HJdr1apV1dXVR44cKSsrU6lURqORIAgMw8JdYAAmvevmZdtAl9MyQjusbr6YbRwiw12UH6GETTk8fGGUQMxWPsJ9JEMgT+SGu6jA+vr6Ll++nJ2dnZiYWF5ePjg4WFVVJZFI2tvb4XJq0oJcZpbOzk6KotLT08+dO7dp06a1a9e++uqrXV1dTqeTCXfVm88Yr9SZKdIjlOG4lMfmRLE5UWwu8/r4XuR2uWnK7SLdLgdlHrZ5aG/GQvHCIkY8valWqxsbG9esWRMbG/v6668TBFFeXi6Xy2maZrPZ4a4OhB/kMqP5FlRsaWnZsWPH4sWLy8rKjh49ihBasWLFOE/Fa2+0qE/oRHFCSbyQJ5p4Gw64nLRZax+4ps9dJstfPq5bZhgMhpiYmIaGhr1795aWlj7++OO7d+8Wi8XFxcVcLkN78SC8IJcnmPPnz9fW1paUlEyfPn3r1q04jpeXl4f04UMXhb7+l4YksbjpMdG8id2b83q9Qz+MeCjq12VKERGqzS27urqMRmN2drZarX7rrbfWrl27bt261tZWmqazsrLgFgJ4KMjlCezWrVvNzc0FBQVSqbSoqEihUFRWVvJ4PN8svYcerlKp8vLy3nvvvQe8xkV59v+5O/ZXMrEicubDUnZXp7q/5M0p8oQHdVd37txZU1NTV1f30BOSJHn69Gmr1VpcXKxWq99///3Vq1eXlJTo9Xocx/l8flDLB5EPcjlytLW1zZw5Mzo6urS0tKOjo6GhwXcrPzMzM+CmPvPnz0cIpaamVlRUBHwB5fBUf9QfPyt2oneTA+pu0qwsi5cqAkz7tdlsmzdvbmlpcTqdTU1NAQ+32+2VlZVWq3Xbtm0dHR379+9XqVQFBQUej4fFmmDbzAOmgVyOTL508E19HRwc3LVrl06nq6qqWrBgQUFBge818+bN8833UCqV69evX7ly5X0nqXznVuqCKWxOxF53d9T1PP/HJAHh96lz8eLFioqKnp4e37jHpUuXEEI9PT3JyckkSW7cuFGv1x8+fFiv13/77bdz585NT08P318AIhPk8mThcrmOHz+u0+k2bNhw/fr17du3t7W13fmpUCgsLCzcsmXLnZavPuzDYyXCmEi+Bqdd7pvqvg3b7+5K9/nnnx84cECv199pSUhIMJlMSqXyyy+/pCiqtbU1IyMD1j8BIQW5PEktW7bs3vRBCLFYrDlz5uzZswchdKl2pOsHt2zquM5bCAvTkJXPdi5dE4cQevvtt+vq6kjSby42QRCnTp2CIAbjCQbCJimapu987VufVy6XDw8P+1oaTuonQygjhIg4Yf9NUqchEUJXr16VyWT3zSA2mUwQymCcQX95ksrNzfV6vVKpVCAQJCcn5+XlZWRkZGdnYxh29qhueBCTT5ss6ytZtHaX2fLb1xIQQteuXWtvb6+vr+/t7TWZTAaDASHkG2IGYNxE4H12MBYpKSmLFi3KyclJT0+/d59Zr9fbccmSupCJm8+fv3js0LGKdzefEouDucuGSIF39xhHhilpLCctLS0tLa24uNjhcFy5cqW5ubmxsTGIvwuAsYBcnqSqq6sDtvfecHCFHIzFxHU5Qocr4v3YapOq7j7HyOfz8/Pz8/PzX3rppbCWBiYjGF8GfjovW/GYSbctlkiBd7TYwl0FALdBfxn4MepoYZwoRCdXXzj83/ovTObhGGlCTtbSJYvWREdz+zU3Pvl0/boXPvzm+12awQ6pRPn00tcy057wHdKvufH1Nx/09l8Vi+QKWXKIChNIeaY+RFEeDgd6KiD84F0I/Az3ONjckHxaf/+fPae++yR7dmHJqq1ZGaozdQdqjt1+BNzlIg9Ub3ni0ede/sNuqST+i0PbbDYjQmhI27V738tms7ao8JXFj/6+f+BGKArzsVtop8UduvMDMHbQXwZ3uSiPx4Oi2MH/tDaZtbVnP3u++C9ZmbefNiRE8sMn/v6bojd83656+s3s2YUIoaLCVz7aXXqzqzkr48lT332MYayNG/YKBVKEEMZiHTnxj6DX5sPhRdnMtFgGuzGB8INcBnfZTLQsISQP+P1w84LbTR+sefdgzbv/b/MihEyW2zOmOdG3f69UokQImS1ainLe6GxcmPusL5QRQlGsEL5d+QTXboX+MmAEyGVwFw+PGhl0xoVg/X2zRYcQWrfmAwkRe2+7LGbK4NDNe1vYUdEIIY/Hbbbo3G46RqoMfjWBOMwUlxfC5VIBGDvIZXAXTxDlpj0ej5cV7HlyfL7Y90WsYtoYD/F1k63WkeBWMhqadONi+HcAjAD3/YAfXMSmyeBfzs9ImY9h2LnzX91pISnHgw/h8QRyWdLl9lqadgW9np+inLRAHLEr54GJBXIZ+JEncB3m4G+iKpclPbZg9dXrdfsOvHn+0vF/n9m3/cNn+zTXH3zU0idf1Bv6Pq56sb7xkPrC4TP1B4NemA9pd3HxKC4fchkwAly4AT8zcgRNZ+1EXPB3J1m5YpOEiD3XeOhGZ6NYJM9MX0KIYx98yNw5yx0Oy5n6gye//zhOkTI1KVOr6w56YQghy7A9ZTYMLgOmgHWLgB+n3f3Zn7pnLZka7kLGVXeT5qnn5ImpkbzYNJhAoL8M/PDwqKSZuEVrE42+od/Wv6kCtk9Nmt3d2/rTdgGfeOeNI0Es8p+fbhgY6vxp+xTlrL6BwGMjf91SO9rZKIeLw8EglAFzQH8Z3G9kiDq6ayBlwZTRXmAY0QT+gRdDWIC3E4axpJL4IFZoMmvd7gA3AzFs1PdzjDRhtLP1tw3nPSWckROqp88B+LmgvwzuJ43jJKTwRvot0sTAUfWAjBsfhFgRrFM5zKSXdkEoA0aB+RgggKUvxBp6jZPhWkrfZVheGhfuKgDwA7kMAmCxsGdeTvjxQn+4CwmtgavDuU8R8gRuuAsBwA/kMggsJp5T+DtFX+tQuAsJFc01bUa+YOY8GMEAjAO5DEaVNBNf8ow0InvNmvahWTn8rMfE4S4EgABgPgZ4CJ2GrNnZr5wlI+Ij4ckL24jTpDHmqogZOZHw54CIBLkMHs7r8Z7cO6TTUIrUGKFsos7zddoobachOtpb+LxCFg9jyoC5IJfBWGn7yPoTem0/JZThIgWOS7isKKaPg3k9XoeVtAzZ7QY7IefMLRBPSw/+I+YABBfkMvh5zAbXrVZbR5PNrKdoysPhs0VyntM6Hku+jV00znYYScrhpl0eeSJvWjo+fY5QpuSM4VAAwg9yGfxCXq+XcnrsZrfD5vZ6wl2NPwxDXD4LJ9h8ASwRByYeyGUAAGAWpo8PAgDAZAO5DAAAzAK5DAAAzAK5DAAAzAK5DAAAzAK5DAAAzPI/w2mQbbF6IGEAAAAASUVORK5CYII=",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Auto-tools will be invoked automatically by the ToolNode\n",
"auto_tools = [get_empty_datadict]\n",
"tool_node = ToolNode(auto_tools)\n",
"\n",
"# Order-tools will be handled by the order node.\n",
"intake_tools = [patient_id, symptom, confirm_data, get_data, clear_data, save_data]\n",
"\n",
"# The LLM needs to know about all of the tools, so specify everything here.\n",
"llm_with_tools = llm.bind_tools(auto_tools + intake_tools)\n",
"\n",
"\n",
"graph_builder = StateGraph(DataState)\n",
"\n",
"# Nodes\n",
"graph_builder.add_node(\"chatbot_healthassistant\", chatbot_with_tools)\n",
"graph_builder.add_node(\"patient\", human_node)\n",
"graph_builder.add_node(\"datacreation\", tool_node)\n",
"graph_builder.add_node(\"documenting\", data_node)\n",
"\n",
"# Chatbot -> {ordering, tools, human, END}\n",
"graph_builder.add_conditional_edges(\"chatbot_healthassistant\", maybe_route_to_tools)\n",
"# Human -> {chatbot, END}\n",
"graph_builder.add_conditional_edges(\"patient\", maybe_exit_human_node)\n",
"# TestCase_Paintrek\n",
"# Tools (both kinds) always route back to chat afterwards.\n",
"graph_builder.add_edge(\"datacreation\", \"chatbot_healthassistant\")\n",
"graph_builder.add_edge(\"documenting\", \"chatbot_healthassistant\")\n",
"\n",
"graph_builder.add_edge(START, \"chatbot_healthassistant\")\n",
"graph_with_order_tools = graph_builder.compile()\n",
"\n",
"Image(graph_with_order_tools.get_graph().draw_mermaid_png())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "G0SVsDu4gD_T"
},
"source": [
"Now run the complete ordering system graph.\n",
"\n",
"**You must uncomment the `.invoke(...)` line to run this step.**"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2025-01-29T20:09:38.185616Z",
"iopub.status.busy": "2025-01-29T20:09:38.185131Z",
"iopub.status.idle": "2025-01-29T20:10:08.474591Z",
"shell.execute_reply": "2025-01-29T20:10:08.472926Z",
"shell.execute_reply.started": "2025-01-29T20:09:38.185577Z"
},
"id": "NCRSgaBUfIHF",
"trusted": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: Welcome to the Paintrek world. I am a health assistant, an interactive clinical recording system. I will ask you questions about your pain and related symptoms and record your responses. I will then store this information securely. At any time, you can type `q` to quit.\n"
]
},
{
"ename": "KeyboardInterrupt",
"evalue": "Interrupted by user",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[20], line 6\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# The default recursion limit for traversing nodes is 25 - setting it higher\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;66;03m# means you can try a more complex order with multiple steps and round-trips.\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \u001b[38;5;66;03m# config = {\"recursion_limit\": 500}\u001b[39;00m\n\u001b[1;32m 4\u001b[0m \n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# Uncomment this line to execute the graph:\u001b[39;00m\n\u001b[0;32m----> 6\u001b[0m state \u001b[38;5;241m=\u001b[39m graph_with_order_tools\u001b[38;5;241m.\u001b[39minvoke({\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: []})\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1961\u001b[0m, in \u001b[0;36mPregel.invoke\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, **kwargs)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1960\u001b[0m chunks \u001b[38;5;241m=\u001b[39m []\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m chunk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m 1962\u001b[0m \u001b[38;5;28minput\u001b[39m,\n\u001b[1;32m 1963\u001b[0m config,\n\u001b[1;32m 1964\u001b[0m stream_mode\u001b[38;5;241m=\u001b[39mstream_mode,\n\u001b[1;32m 1965\u001b[0m output_keys\u001b[38;5;241m=\u001b[39moutput_keys,\n\u001b[1;32m 1966\u001b[0m interrupt_before\u001b[38;5;241m=\u001b[39minterrupt_before,\n\u001b[1;32m 1967\u001b[0m interrupt_after\u001b[38;5;241m=\u001b[39minterrupt_after,\n\u001b[1;32m 1968\u001b[0m debug\u001b[38;5;241m=\u001b[39mdebug,\n\u001b[1;32m 1969\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m 1970\u001b[0m ):\n\u001b[1;32m 1971\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m stream_mode \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mvalues\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 1972\u001b[0m latest \u001b[38;5;241m=\u001b[39m chunk\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/__init__.py:1670\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, interrupt_before, interrupt_after, debug, subgraphs)\u001b[0m\n\u001b[1;32m 1664\u001b[0m \u001b[38;5;66;03m# Similarly to Bulk Synchronous Parallel / Pregel model\u001b[39;00m\n\u001b[1;32m 1665\u001b[0m \u001b[38;5;66;03m# computation proceeds in steps, while there are channel updates.\u001b[39;00m\n\u001b[1;32m 1666\u001b[0m \u001b[38;5;66;03m# Channel updates from step N are only visible in step N+1\u001b[39;00m\n\u001b[1;32m 1667\u001b[0m \u001b[38;5;66;03m# channels are guaranteed to be immutable for the duration of the step,\u001b[39;00m\n\u001b[1;32m 1668\u001b[0m \u001b[38;5;66;03m# with channel updates applied only at the transition between steps.\u001b[39;00m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m loop\u001b[38;5;241m.\u001b[39mtick(input_keys\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minput_channels):\n\u001b[0;32m-> 1670\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _ \u001b[38;5;129;01min\u001b[39;00m runner\u001b[38;5;241m.\u001b[39mtick(\n\u001b[1;32m 1671\u001b[0m loop\u001b[38;5;241m.\u001b[39mtasks\u001b[38;5;241m.\u001b[39mvalues(),\n\u001b[1;32m 1672\u001b[0m timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstep_timeout,\n\u001b[1;32m 1673\u001b[0m retry_policy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mretry_policy,\n\u001b[1;32m 1674\u001b[0m get_waiter\u001b[38;5;241m=\u001b[39mget_waiter,\n\u001b[1;32m 1675\u001b[0m ):\n\u001b[1;32m 1676\u001b[0m \u001b[38;5;66;03m# emit output\u001b[39;00m\n\u001b[1;32m 1677\u001b[0m \u001b[38;5;28;01myield from\u001b[39;00m output()\n\u001b[1;32m 1678\u001b[0m \u001b[38;5;66;03m# emit output\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/runner.py:230\u001b[0m, in \u001b[0;36mPregelRunner.tick\u001b[0;34m(self, tasks, reraise, timeout, retry_policy, get_waiter)\u001b[0m\n\u001b[1;32m 228\u001b[0m t \u001b[38;5;241m=\u001b[39m tasks[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 229\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 230\u001b[0m run_with_retry(\n\u001b[1;32m 231\u001b[0m t,\n\u001b[1;32m 232\u001b[0m retry_policy,\n\u001b[1;32m 233\u001b[0m configurable\u001b[38;5;241m=\u001b[39m{\n\u001b[1;32m 234\u001b[0m CONFIG_KEY_SEND: partial(writer, t),\n\u001b[1;32m 235\u001b[0m CONFIG_KEY_CALL: partial(call, t),\n\u001b[1;32m 236\u001b[0m },\n\u001b[1;32m 237\u001b[0m )\n\u001b[1;32m 238\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcommit(t, \u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m 239\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/pregel/retry.py:40\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy, configurable)\u001b[0m\n\u001b[1;32m 38\u001b[0m task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m 39\u001b[0m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 40\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m task\u001b[38;5;241m.\u001b[39mproc\u001b[38;5;241m.\u001b[39minvoke(task\u001b[38;5;241m.\u001b[39minput, config)\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ParentCommand \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 42\u001b[0m ns: \u001b[38;5;28mstr\u001b[39m \u001b[38;5;241m=\u001b[39m config[CONF][CONFIG_KEY_CHECKPOINT_NS]\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:462\u001b[0m, in \u001b[0;36mRunnableSeq.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 458\u001b[0m config \u001b[38;5;241m=\u001b[39m patch_config(\n\u001b[1;32m 459\u001b[0m config, callbacks\u001b[38;5;241m=\u001b[39mrun_manager\u001b[38;5;241m.\u001b[39mget_child(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mseq:step:\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mi\u001b[38;5;250m \u001b[39m\u001b[38;5;241m+\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m1\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 460\u001b[0m )\n\u001b[1;32m 461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m i \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 462\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 463\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 464\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/langgraph/utils/runnable.py:226\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 225\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, config)\n\u001b[0;32m--> 226\u001b[0m ret \u001b[38;5;241m=\u001b[39m context\u001b[38;5;241m.\u001b[39mrun(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 227\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m 228\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
"Cell \u001b[0;32mIn[14], line 6\u001b[0m, in \u001b[0;36mhuman_node\u001b[0;34m(state)\u001b[0m\n\u001b[1;32m 3\u001b[0m last_msg \u001b[38;5;241m=\u001b[39m state[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n\u001b[1;32m 4\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mModel:\u001b[39m\u001b[38;5;124m\"\u001b[39m, last_msg\u001b[38;5;241m.\u001b[39mcontent)\n\u001b[0;32m----> 6\u001b[0m user_input \u001b[38;5;241m=\u001b[39m \u001b[38;5;28minput\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUser: \u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 8\u001b[0m \u001b[38;5;66;03m# If it looks like the user is trying to quit, flag the conversation\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;66;03m# as over.\u001b[39;00m\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m user_input \u001b[38;5;129;01min\u001b[39;00m {\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mq\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquit\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mexit\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mgoodbye\u001b[39m\u001b[38;5;124m\"\u001b[39m}:\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/ipykernel/kernelbase.py:1282\u001b[0m, in \u001b[0;36mKernel.raw_input\u001b[0;34m(self, prompt)\u001b[0m\n\u001b[1;32m 1280\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraw_input was called, but this frontend does not support input requests.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1281\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m StdinNotImplementedError(msg)\n\u001b[0;32m-> 1282\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_input_request(\n\u001b[1;32m 1283\u001b[0m \u001b[38;5;28mstr\u001b[39m(prompt),\n\u001b[1;32m 1284\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_parent_ident[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mshell\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 1285\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mget_parent(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mshell\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 1286\u001b[0m password\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[1;32m 1287\u001b[0m )\n",
"File \u001b[0;32m~/miniconda3/envs/paintrekbot/lib/python3.12/site-packages/ipykernel/kernelbase.py:1325\u001b[0m, in \u001b[0;36mKernel._input_request\u001b[0;34m(self, prompt, ident, parent, password)\u001b[0m\n\u001b[1;32m 1322\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m:\n\u001b[1;32m 1323\u001b[0m \u001b[38;5;66;03m# re-raise KeyboardInterrupt, to truncate traceback\u001b[39;00m\n\u001b[1;32m 1324\u001b[0m msg \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInterrupted by user\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1325\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mKeyboardInterrupt\u001b[39;00m(msg) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1326\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m:\n\u001b[1;32m 1327\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mlog\u001b[38;5;241m.\u001b[39mwarning(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid Message:\u001b[39m\u001b[38;5;124m\"\u001b[39m, exc_info\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n",
"\u001b[0;31mKeyboardInterrupt\u001b[0m: Interrupted by user"
]
}
],
"source": [
"# The default recursion limit for traversing nodes is 25 - setting it higher\n",
"# means you can try a more complex order with multiple steps and round-trips.\n",
"# config = {\"recursion_limit\": 500}\n",
"\n",
"# Uncomment this line to execute the graph:\n",
"state = graph_with_order_tools.invoke({\"messages\": []})\n",
"\n",
"# pprint(state)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2024-11-26T20:49:57.557546Z",
"iopub.status.busy": "2024-11-26T20:49:57.557070Z",
"iopub.status.idle": "2024-11-26T20:49:57.565305Z",
"shell.execute_reply": "2024-11-26T20:49:57.563903Z",
"shell.execute_reply.started": "2024-11-26T20:49:57.557497Z"
},
"id": "n4jUJCr3fJpy",
"trusted": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"dict_keys(['messages', 'finished'])\n"
]
}
],
"source": [
"# Uncomment this once you have run the graph from the previous cell.\n",
"pprint(state.keys())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"trusted": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"name": "day-3-building-an-agent-with-langgraph.ipynb",
"toc_visible": true
},
"kaggle": {
"accelerator": "none",
"dataSources": [],
"dockerImageVersionId": 30786,
"isGpuEnabled": false,
"isInternetEnabled": true,
"language": "python",
"sourceType": "notebook"
},
"kernelspec": {
"display_name": "paintrekbot",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|