File size: 2,522 Bytes
c193104
d76943e
 
 
c193104
 
d76943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c193104
d76943e
 
 
 
 
c193104
d76943e
 
 
c193104
d76943e
 
c193104
 
d76943e
 
 
 
 
 
 
 
c193104
d76943e
 
 
 
 
 
 
c193104
 
d76943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c193104
 
d76943e
 
 
 
 
 
 
 
 
 
c193104
d76943e
 
c193104
d76943e
 
c193104
d76943e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
import os
from typing import Iterator
import sambanova


def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    outputs = []
    for text in sambanova.Streamer(conversation, new_tokens=max_new_tokens,
                                   temperature=temperature, top_k=top_k, top_p=top_p):
        outputs.append(text)
        yield "".join(outputs)

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.9,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.2,
        ),
    ],
    stop_btn=None,
    fill_height=True,
    examples=[
        ["Which one is bigger? 4.9 or 4.11"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
    cache_examples=False,
)
with gr.Blocks() as demo:
    gr.Markdown('# Sambanova model inference LLAMA 405B')

    chat_interface.render()
    
if __name__ == "__main__":
    demo.queue(max_size=20).launch()