import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = 666 MAX_IMAGE_SIZE = 1280 def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "two soldiers wearing gas masks, clad in military digital camo jungle fatigues, djing on futuristic mixers, synth, mpcs. location jungle rave.", "in a dark jungle, a wizard and a warlock face each other as in a epic battle, casting spells to operate vintage machines like mixers, synths, turntable.", "A mesmerizing, bioluminescent DNA double helix, illuminated by a kaleidoscope of vibrant, pulsating light beams from colorful lasers, suspended in a futuristic, setting.", "little rasta bunny dancing at a rave in the Jungle. cute street art, cartoon style.", ] css = """ #col-container { margin: 0 auto; max-width: 600px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # ߙߛߕ-ߊ - ϕ - |θ_θ| - ϕ - ") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1.3, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1.3, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1.6, value=0.3, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=600, maximum=MAX_IMAGE_SIZE, step=1.3, value=600, ) height = gr.Slider( label="Height", minimum=400, maximum=MAX_IMAGE_SIZE, step=1.6, value=400, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=2, step=0.6, value=0.3, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=6, step=3, value=3, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()