File size: 3,825 Bytes
f1221e3
 
 
 
25d5b43
f1221e3
 
 
 
9ea3aec
f1221e3
 
 
 
 
 
 
 
 
a51d307
9ea3aec
f1221e3
 
25d5b43
f1221e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b359bb
 
 
f1221e3
 
 
 
 
9b359bb
f1221e3
 
 
 
 
8df5fb5
f1221e3
 
 
 
 
4e3d385
f1221e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6653089
f1221e3
9b359bb
f1221e3
 
 
a51d307
f1221e3
 
 
 
9ea3aec
f1221e3
9b359bb
9ea3aec
f1221e3
 
 
 
9ea3aec
f1221e3
9b359bb
9ea3aec
f1221e3
 
 
 
 
 
9b359bb
 
 
f1221e3
 
 
 
 
9b359bb
 
d4998e9
f1221e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ea3aec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import gradio as gr
import numpy as np
import random


from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/sdxl-turbo" 

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = 66
MAX_IMAGE_SIZE = 720



def infer(
    prompt,
    negative_prompt,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    image = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
    ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle holding up his hand like soundcrash gun fingers. bright rave lasers in the background, detailed, 8k",
    "jazz hands and gun fingers",
    "Gun Fingers in the air at a jungle rave",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 720px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # ߙߛߕ-ߊ  |θ_θ|  ")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=2,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1.5,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=720,
                    maximum=MAX_IMAGE_SIZE,
                    step=1.5,
                    value=720,  
                )

                height = gr.Slider(
                    label="Height",
                    minimum=720,
                    maximum=MAX_IMAGE_SIZE,
                    step=1.5,
                    value=720, 
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=2.3,
                    step=0.6,
                    value=0.3, 
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=1.5,
                    step=1.5,
                    value=2,  
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()