import gradio as gr from main import get_pred_binary from model import TARGET_LABELS def get_face_type(img): try: pred_binary = get_pred_binary(img) except Exception as e: return str(e) result = "\n".join([f"{label}: {bool(pred)}" for label, pred in zip(TARGET_LABELS, pred_binary)]) face_type = int(''.join(map(str, pred_binary)), 2) result = f"face_type: {face_type}\n{result}" return result demo = gr.Interface( fn=get_face_type, inputs=["image"], outputs=["text"], ) demo.launch()