add model
Browse files- .gitignore +2 -1
- app.py +21 -0
- main.py +23 -67
- model.py +210 -0
- requirements.txt +6 -1
.gitignore
CHANGED
|
@@ -169,4 +169,5 @@ cython_debug/
|
|
| 169 |
|
| 170 |
# PyPI configuration file
|
| 171 |
.pypirc
|
| 172 |
-
.idea/*
|
|
|
|
|
|
| 169 |
|
| 170 |
# PyPI configuration file
|
| 171 |
.pypirc
|
| 172 |
+
.idea/*
|
| 173 |
+
data
|
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from main import get_pred_binary
|
| 4 |
+
from model import TARGET_LABELS
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_face_type(img):
|
| 8 |
+
pred_binary = get_pred_binary(img)
|
| 9 |
+
result = [f"{label}: {bool(pred)}" for label, pred in zip(TARGET_LABELS, pred_binary)]
|
| 10 |
+
face_type = int(''.join(map(str, pred_binary)), 2)
|
| 11 |
+
result = f"face_type: {face_type}\n{"\n".join(result)}"
|
| 12 |
+
return result
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
demo = gr.Interface(
|
| 16 |
+
fn=get_face_type,
|
| 17 |
+
inputs=["image"],
|
| 18 |
+
outputs=["text"],
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
demo.launch()
|
main.py
CHANGED
|
@@ -1,15 +1,19 @@
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
import requests
|
|
|
|
| 4 |
from deepface import DeepFace
|
| 5 |
from fastapi import FastAPI, HTTPException
|
| 6 |
|
|
|
|
|
|
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
@app.get("/face-type")
|
|
@@ -23,73 +27,25 @@ def get_face_type(url: str):
|
|
| 23 |
except requests.exceptions.RequestException as e:
|
| 24 |
raise HTTPException(status_code=400, detail=f"Failed to download image from URL: {str(e)}")
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
try:
|
| 27 |
embedding_objs = DeepFace.represent(
|
| 28 |
img_path=img,
|
| 29 |
-
model_name="
|
| 30 |
except Exception as e:
|
| 31 |
raise HTTPException(status_code=500, detail="No face detected.")
|
|
|
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
bits = (projections >= 0).astype(int)
|
| 38 |
-
# Convert bits to integer (LSB first)
|
| 39 |
-
face_type = int(''.join(map(str, bits)), 2)
|
| 40 |
-
|
| 41 |
-
return {"face_type": face_type}
|
| 42 |
|
| 43 |
-
|
| 44 |
-
# try:
|
| 45 |
-
# attribute = DeepFace.analyze(
|
| 46 |
-
# img_path=file,
|
| 47 |
-
# actions=['age', 'gender'],
|
| 48 |
-
# )
|
| 49 |
-
# gender = attribute[0]['dominant_gender']
|
| 50 |
-
# age = attribute[0]['age']
|
| 51 |
-
# if gender == 'Man':
|
| 52 |
-
# if age < 10:
|
| 53 |
-
# face_type = 7
|
| 54 |
-
# elif age < 20:
|
| 55 |
-
# face_type = 3
|
| 56 |
-
# elif age < 30:
|
| 57 |
-
# face_type = 12
|
| 58 |
-
# elif age < 40:
|
| 59 |
-
# face_type = 1
|
| 60 |
-
# elif age < 50:
|
| 61 |
-
# face_type = 15
|
| 62 |
-
# elif age < 60:
|
| 63 |
-
# face_type = 5
|
| 64 |
-
# elif age < 70:
|
| 65 |
-
# face_type = 10
|
| 66 |
-
# else:
|
| 67 |
-
# face_type = 8
|
| 68 |
-
# elif gender == 'Woman':
|
| 69 |
-
# if age < 10:
|
| 70 |
-
# face_type = 14
|
| 71 |
-
# elif age < 20:
|
| 72 |
-
# face_type = 0
|
| 73 |
-
# elif age < 30:
|
| 74 |
-
# face_type = 4
|
| 75 |
-
# elif age < 40:
|
| 76 |
-
# face_type = 6
|
| 77 |
-
# elif age < 50:
|
| 78 |
-
# face_type = 13
|
| 79 |
-
# elif age < 60:
|
| 80 |
-
# face_type = 2
|
| 81 |
-
# elif age < 70:
|
| 82 |
-
# face_type = 9
|
| 83 |
-
# else:
|
| 84 |
-
# face_type = 11
|
| 85 |
-
# else:
|
| 86 |
-
# return "Face could not be detected."
|
| 87 |
-
# return f"face type:{face_type}---gender:{gender}---age:{age}"
|
| 88 |
-
# except Exception as e:
|
| 89 |
-
# print(e)
|
| 90 |
-
# return f"Face could not be detected."
|
| 91 |
-
#
|
| 92 |
-
#
|
| 93 |
-
# if __name__ == '__main__':
|
| 94 |
-
# demo = gr.Interface(fn=get_new_face_type, inputs="image", outputs="label")
|
| 95 |
-
# demo.launch(share=False)
|
|
|
|
| 1 |
import cv2
|
| 2 |
import numpy as np
|
| 3 |
import requests
|
| 4 |
+
import torch
|
| 5 |
from deepface import DeepFace
|
| 6 |
from fastapi import FastAPI, HTTPException
|
| 7 |
|
| 8 |
+
from model import MultiLabelClassifier
|
| 9 |
+
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
+
model_path = "data/classifier.pth"
|
| 13 |
+
model = MultiLabelClassifier(embedding_dim=4096, hidden_dim=1024)
|
| 14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 15 |
+
model.load_state_dict(torch.load(model_path, weights_only=True))
|
| 16 |
+
model.to(device).eval()
|
| 17 |
|
| 18 |
|
| 19 |
@app.get("/face-type")
|
|
|
|
| 27 |
except requests.exceptions.RequestException as e:
|
| 28 |
raise HTTPException(status_code=400, detail=f"Failed to download image from URL: {str(e)}")
|
| 29 |
|
| 30 |
+
pred_binary = get_pred_binary(img)
|
| 31 |
+
|
| 32 |
+
face_type = int(''.join(map(str, pred_binary)), 2)
|
| 33 |
+
|
| 34 |
+
return {"face_type": face_type}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_pred_binary(img: np.ndarray):
|
| 38 |
try:
|
| 39 |
embedding_objs = DeepFace.represent(
|
| 40 |
img_path=img,
|
| 41 |
+
model_name="VGG-Face")
|
| 42 |
except Exception as e:
|
| 43 |
raise HTTPException(status_code=500, detail="No face detected.")
|
| 44 |
+
ebd = torch.tensor(embedding_objs[0]['embedding'], dtype=torch.float32).to(device)
|
| 45 |
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
logits = model(ebd)
|
| 48 |
+
probs = torch.sigmoid(logits).cpu().numpy()
|
| 49 |
+
pred_binary = (probs > 0.5).astype(int)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
return pred_binary
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import pickle
|
| 3 |
+
from concurrent.futures import ProcessPoolExecutor, as_completed
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import pandas
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import torch
|
| 9 |
+
from deepface import DeepFace
|
| 10 |
+
from sklearn.metrics import accuracy_score, recall_score, f1_score
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.utils.data import Dataset, DataLoader
|
| 13 |
+
from tqdm import tqdm
|
| 14 |
+
import torch.nn.functional as F
|
| 15 |
+
|
| 16 |
+
TARGET_LABELS = ["Male", "Young", "Oval_Face", "High_Cheekbones", "Big_Lips", "Big_Nose"]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def load_df(target_labels: list[str]):
|
| 20 |
+
# 1. load CSV file
|
| 21 |
+
partition_df = pd.read_csv('./data/list_eval_partition.csv')
|
| 22 |
+
labels_df = pd.read_csv('./data/list_attr_celeba.csv')
|
| 23 |
+
|
| 24 |
+
# 2. merge two tables
|
| 25 |
+
df = pd.merge(partition_df, labels_df, on='image_id')
|
| 26 |
+
|
| 27 |
+
# 3. mapping label: -1 -> 0
|
| 28 |
+
for label in target_labels:
|
| 29 |
+
df[label] = (df[label] + 1) // 2 # 转成 0/1
|
| 30 |
+
|
| 31 |
+
# 4. subset
|
| 32 |
+
train_df = df[df['partition'] != 2]
|
| 33 |
+
test_df = df[df['partition'] == 2]
|
| 34 |
+
|
| 35 |
+
return train_df, test_df
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class EmbeddingDataset(Dataset):
|
| 39 |
+
def __init__(self, df: pandas.DataFrame, target_labels: list[str]):
|
| 40 |
+
self.df = df
|
| 41 |
+
self.image_root = Path("./data/img_align_celeba/img_align_celeba/")
|
| 42 |
+
self.target_labels = target_labels
|
| 43 |
+
self.preprocess()
|
| 44 |
+
|
| 45 |
+
def preprocess(self):
|
| 46 |
+
to_process_images = [image_id for image_id in self.df['image_id'] if
|
| 47 |
+
not (self.image_root / f"{image_id}.pkl").exists()]
|
| 48 |
+
if len(to_process_images) > 0:
|
| 49 |
+
logging.info(f"Preprocessing {len(to_process_images)} images")
|
| 50 |
+
else:
|
| 51 |
+
return
|
| 52 |
+
with ProcessPoolExecutor() as executor:
|
| 53 |
+
futures = [executor.submit(self._process_image, image_id) for image_id in to_process_images]
|
| 54 |
+
for future in tqdm(as_completed(futures), total=len(futures), desc="Preprocessing"):
|
| 55 |
+
try:
|
| 56 |
+
future.result()
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logging.error(f"Error processing image: {e}")
|
| 59 |
+
|
| 60 |
+
def _process_image(self, image_id: str):
|
| 61 |
+
# Get the image path and cache file path
|
| 62 |
+
image_path = self.image_root / image_id
|
| 63 |
+
cache_file = self.image_root / f"{image_id}.pkl"
|
| 64 |
+
|
| 65 |
+
# Check if the embedding is already cached
|
| 66 |
+
if not cache_file.exists():
|
| 67 |
+
# Generate the embedding if it is not cached
|
| 68 |
+
embedding_obj = DeepFace.represent(
|
| 69 |
+
img_path=str(image_path),
|
| 70 |
+
model_name="VGG-Face",
|
| 71 |
+
enforce_detection=False
|
| 72 |
+
)
|
| 73 |
+
embedding = torch.tensor(embedding_obj[0]["embedding"], dtype=torch.float32)
|
| 74 |
+
|
| 75 |
+
# Save the embedding to a pickle file for future use
|
| 76 |
+
with open(cache_file, "wb") as f:
|
| 77 |
+
pickle.dump(embedding, f)
|
| 78 |
+
|
| 79 |
+
def __len__(self):
|
| 80 |
+
return len(self.df)
|
| 81 |
+
|
| 82 |
+
def __getitem__(self, idx):
|
| 83 |
+
row = self.df.iloc[idx]
|
| 84 |
+
|
| 85 |
+
# Get embedding
|
| 86 |
+
cache_file = self.image_root / f"{row['image_id']}.pkl"
|
| 87 |
+
with open(cache_file, "rb") as f:
|
| 88 |
+
embedding = pickle.load(f)
|
| 89 |
+
|
| 90 |
+
# Get labels
|
| 91 |
+
labels = torch.from_numpy(row[self.target_labels].values.astype(int))
|
| 92 |
+
return embedding, labels
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class MultiLabelClassifier(nn.Module):
|
| 96 |
+
def __init__(self, embedding_dim: int, hidden_dim: int):
|
| 97 |
+
super().__init__()
|
| 98 |
+
self.embedding_dim = embedding_dim
|
| 99 |
+
self.hidden_dim = hidden_dim
|
| 100 |
+
self.output_dim = len(TARGET_LABELS)
|
| 101 |
+
self.dropout = 0.1
|
| 102 |
+
self.classifier = nn.Sequential(
|
| 103 |
+
nn.Linear(embedding_dim, self.hidden_dim),
|
| 104 |
+
nn.ReLU(inplace=True),
|
| 105 |
+
nn.Dropout(self.dropout),
|
| 106 |
+
nn.Linear(hidden_dim, hidden_dim // 2),
|
| 107 |
+
nn.ReLU(inplace=True),
|
| 108 |
+
nn.Dropout(self.dropout),
|
| 109 |
+
nn.Linear(hidden_dim // 2, len(TARGET_LABELS)),
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
return self.classifier(x)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class FocalLoss(nn.Module):
|
| 117 |
+
def __init__(self, alpha=1.0, gamma=2.0, reduction='mean'):
|
| 118 |
+
super(FocalLoss, self).__init__()
|
| 119 |
+
self.alpha = alpha
|
| 120 |
+
self.gamma = gamma
|
| 121 |
+
self.reduction = reduction
|
| 122 |
+
|
| 123 |
+
def forward(self, inputs: torch.Tensor, targets: torch.Tensor):
|
| 124 |
+
probs = torch.sigmoid(inputs)
|
| 125 |
+
ce_loss = F.binary_cross_entropy(probs, targets.float(), reduction='none')
|
| 126 |
+
pt = torch.where(targets == 1, probs, 1 - probs)
|
| 127 |
+
focal_loss = self.alpha * (1 - pt) ** self.gamma * ce_loss
|
| 128 |
+
|
| 129 |
+
if self.reduction == 'mean':
|
| 130 |
+
return focal_loss.mean()
|
| 131 |
+
elif self.reduction == 'sum':
|
| 132 |
+
return focal_loss.sum()
|
| 133 |
+
else:
|
| 134 |
+
return focal_loss
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def main():
|
| 138 |
+
logging.basicConfig(
|
| 139 |
+
level=logging.INFO,
|
| 140 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 141 |
+
handlers=[
|
| 142 |
+
logging.FileHandler("train.log"),
|
| 143 |
+
logging.StreamHandler() # Also log to the console
|
| 144 |
+
]
|
| 145 |
+
)
|
| 146 |
+
train_df, test_df = load_df(TARGET_LABELS)
|
| 147 |
+
# filter df
|
| 148 |
+
# train_df, test_df = train_df[train_df.index % 5 == 0], test_df[test_df.index % 5 == 0]
|
| 149 |
+
train_dataset = EmbeddingDataset(train_df, TARGET_LABELS)
|
| 150 |
+
test_dataset = EmbeddingDataset(test_df, TARGET_LABELS)
|
| 151 |
+
|
| 152 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=False)
|
| 153 |
+
test_loader = DataLoader(test_dataset, batch_size=32)
|
| 154 |
+
logging.info(f"Initializing Dataset, train_loader: {len(train_loader)}, test_loader: {len(test_loader)}")
|
| 155 |
+
|
| 156 |
+
device = torch.device("mps")
|
| 157 |
+
logging.info(f"Using device: {device}")
|
| 158 |
+
|
| 159 |
+
model = MultiLabelClassifier(embedding_dim=4096, hidden_dim=1024).to(device)
|
| 160 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
| 161 |
+
# criterion = nn.BCEWithLogitsLoss()
|
| 162 |
+
criterion = FocalLoss(alpha=0.5, gamma=2.0)
|
| 163 |
+
logging.info("Initializing model, optimizer and criterion")
|
| 164 |
+
logging.info("Starting training")
|
| 165 |
+
|
| 166 |
+
for epoch in range(50):
|
| 167 |
+
model.train()
|
| 168 |
+
for inputs, targets in tqdm(train_loader, desc=f"Training Epoch {epoch}"):
|
| 169 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
| 170 |
+
outputs = model(inputs)
|
| 171 |
+
loss = criterion(outputs, targets.float())
|
| 172 |
+
|
| 173 |
+
optimizer.zero_grad()
|
| 174 |
+
loss.backward()
|
| 175 |
+
optimizer.step()
|
| 176 |
+
logging.info(f"Epoch {epoch}, Loss: {loss.item():.4f}")
|
| 177 |
+
|
| 178 |
+
if epoch % 5 == 0:
|
| 179 |
+
model.eval()
|
| 180 |
+
test_loss = 0.0
|
| 181 |
+
all_preds = []
|
| 182 |
+
all_targets = []
|
| 183 |
+
|
| 184 |
+
with torch.no_grad():
|
| 185 |
+
for inputs, targets in tqdm(test_loader, desc=f"Test Epoch {epoch}"):
|
| 186 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
| 187 |
+
outputs = model(inputs)
|
| 188 |
+
loss = criterion(outputs, targets.float())
|
| 189 |
+
|
| 190 |
+
test_loss += loss.item()
|
| 191 |
+
predicted = torch.sigmoid(outputs) > 0.5
|
| 192 |
+
all_preds.append(predicted)
|
| 193 |
+
all_targets.append(targets)
|
| 194 |
+
|
| 195 |
+
avg_test_loss = test_loss / len(test_loader)
|
| 196 |
+
all_preds = torch.cat(all_preds).cpu().numpy()
|
| 197 |
+
all_targets = torch.cat(all_targets).cpu().numpy()
|
| 198 |
+
|
| 199 |
+
accuracy = accuracy_score(all_targets, all_preds)
|
| 200 |
+
recall = recall_score(all_targets, all_preds, average='macro')
|
| 201 |
+
f1 = f1_score(all_targets, all_preds, average='macro')
|
| 202 |
+
|
| 203 |
+
logging.info(
|
| 204 |
+
f"Epoch {epoch} - Test Loss: {avg_test_loss:.4f}, Accuracy: {accuracy:.2f}, Recall: {recall:.2f}, F1: {f1:.2f}")
|
| 205 |
+
|
| 206 |
+
torch.save(model.state_dict(), "data/classifier.pth")
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
if __name__ == "__main__":
|
| 210 |
+
main()
|
requirements.txt
CHANGED
|
@@ -3,4 +3,9 @@ numpy
|
|
| 3 |
requests
|
| 4 |
fastapi[standard]
|
| 5 |
opencv-python
|
| 6 |
-
tf-keras
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
requests
|
| 4 |
fastapi[standard]
|
| 5 |
opencv-python
|
| 6 |
+
tf-keras
|
| 7 |
+
pandas
|
| 8 |
+
torch
|
| 9 |
+
scikit-learn
|
| 10 |
+
gradio
|
| 11 |
+
tqdm
|