MotionLCM / mld /utils /utils.py
wxDai's picture
[Init]
eb339cb
raw
history blame
3.02 kB
import random
import numpy as np
from rich import get_console
from rich.table import Table
import torch
import torch.nn as nn
import torch.nn.functional as F
def set_seed(seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def print_table(title: str, metrics: dict) -> None:
table = Table(title=title)
table.add_column("Metrics", style="cyan", no_wrap=True)
table.add_column("Value", style="magenta")
for key, value in metrics.items():
table.add_row(key, str(value))
console = get_console()
console.print(table, justify="center")
def move_batch_to_device(batch: dict, device: torch.device) -> dict:
for key in batch.keys():
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(device)
return batch
def count_parameters(module: nn.Module) -> float:
num_params = sum(p.numel() for p in module.parameters())
return round(num_params / 1e6, 3)
def get_guidance_scale_embedding(w: torch.Tensor, embedding_dim: int = 512,
dtype: torch.dtype = torch.float32) -> torch.Tensor:
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def extract_into_tensor(a: torch.Tensor, t: torch.Tensor, x_shape: torch.Size) -> torch.Tensor:
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def sum_flat(tensor: torch.Tensor) -> torch.Tensor:
return tensor.sum(dim=list(range(1, len(tensor.shape))))
def control_loss_calculate(
vaeloss_type: str, loss_func: str, src: torch.Tensor,
tgt: torch.Tensor, mask: torch.Tensor
) -> torch.Tensor:
if loss_func == 'l1':
loss = F.l1_loss(src, tgt, reduction='none')
elif loss_func == 'l1_smooth':
loss = F.smooth_l1_loss(src, tgt, reduction='none')
elif loss_func == 'l2':
loss = F.mse_loss(src, tgt, reduction='none')
else:
raise ValueError(f'Unknown loss func: {loss_func}')
if vaeloss_type == 'sum':
loss = loss.sum(-1, keepdims=True) * mask
loss = loss.sum() / mask.sum()
elif vaeloss_type == 'sum_mask':
loss = loss.sum(-1, keepdims=True) * mask
loss = sum_flat(loss) / sum_flat(mask)
loss = loss.mean()
elif vaeloss_type == 'mask':
loss = sum_flat(loss * mask)
n_entries = src.shape[-1]
non_zero_elements = sum_flat(mask) * n_entries
loss = loss / non_zero_elements
loss = loss.mean()
else:
raise ValueError(f'Unsupported vaeloss_type: {vaeloss_type}')
return loss