|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class PositionEmbeddingSine1D(nn.Module): |
|
|
|
def __init__(self, d_model: int, max_len: int = 500, batch_first: bool = False) -> None: |
|
super().__init__() |
|
self.batch_first = batch_first |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange( |
|
0, d_model, 2).float() * (-np.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0).transpose(0, 1) |
|
|
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.batch_first: |
|
x = x + self.pe.permute(1, 0, 2)[:, :x.shape[1], :] |
|
else: |
|
x = x + self.pe[:x.shape[0], :] |
|
return x |
|
|
|
|
|
class PositionEmbeddingLearned1D(nn.Module): |
|
|
|
def __init__(self, d_model: int, max_len: int = 500, batch_first: bool = False) -> None: |
|
super().__init__() |
|
self.batch_first = batch_first |
|
self.pe = nn.Parameter(torch.zeros(max_len, 1, d_model)) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self) -> None: |
|
nn.init.uniform_(self.pe) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
if self.batch_first: |
|
x = x + self.pe.permute(1, 0, 2)[:, :x.shape[1], :] |
|
else: |
|
x = x + self.pe[:x.shape[0], :] |
|
return x |
|
|
|
|
|
def build_position_encoding(N_steps: int, position_embedding: str = "sine") -> nn.Module: |
|
if position_embedding == 'sine': |
|
position_embedding = PositionEmbeddingSine1D(N_steps) |
|
elif position_embedding == 'learned': |
|
position_embedding = PositionEmbeddingLearned1D(N_steps) |
|
else: |
|
raise ValueError(f"not supported {position_embedding}") |
|
return position_embedding |
|
|