File size: 19,553 Bytes
eb339cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import os
import sys
import logging
import datetime
import os.path as osp
from typing import Generator
import numpy as np
from tqdm.auto import tqdm
from omegaconf import OmegaConf
import torch
import swanlab
import diffusers
import transformers
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from diffusers.optimization import get_scheduler
from mld.config import parse_args, instantiate_from_config
from mld.data.get_data import get_dataset
from mld.models.modeltype.mld import MLD
from mld.utils.utils import print_table, set_seed, move_batch_to_device
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def guidance_scale_embedding(w: torch.Tensor, embedding_dim: int = 512,
dtype: torch.dtype = torch.float32) -> torch.Tensor:
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor:
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
return x[(...,) + (None,) * dims_to_append]
def scalings_for_boundary_conditions(timestep: torch.Tensor, sigma_data: float = 0.5,
timestep_scaling: float = 10.0) -> tuple:
c_skip = sigma_data ** 2 / ((timestep * timestep_scaling) ** 2 + sigma_data ** 2)
c_out = (timestep * timestep_scaling) / ((timestep * timestep_scaling) ** 2 + sigma_data ** 2) ** 0.5
return c_skip, c_out
def predicted_origin(
model_output: torch.Tensor,
timesteps: torch.Tensor,
sample: torch.Tensor,
prediction_type: str,
alphas: torch.Tensor,
sigmas: torch.Tensor
) -> torch.Tensor:
if prediction_type == "epsilon":
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
pred_x_0 = (sample - sigmas * model_output) / alphas
elif prediction_type == "v_prediction":
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(f"Prediction type {prediction_type} currently not supported.")
return pred_x_0
def extract_into_tensor(a: torch.Tensor, t: torch.Tensor, x_shape: torch.Size) -> torch.Tensor:
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
class DDIMSolver:
def __init__(self, alpha_cumprods: np.ndarray, timesteps: int = 1000, ddim_timesteps: int = 50) -> None:
# DDIM sampling parameters
step_ratio = timesteps // ddim_timesteps
self.ddim_timesteps = (np.arange(1, ddim_timesteps + 1) * step_ratio).round().astype(np.int64) - 1
self.ddim_alpha_cumprods = alpha_cumprods[self.ddim_timesteps]
self.ddim_alpha_cumprods_prev = np.asarray(
[alpha_cumprods[0]] + alpha_cumprods[self.ddim_timesteps[:-1]].tolist()
)
# convert to torch tensors
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.ddim_alpha_cumprods = torch.from_numpy(self.ddim_alpha_cumprods)
self.ddim_alpha_cumprods_prev = torch.from_numpy(self.ddim_alpha_cumprods_prev)
def to(self, device: torch.device) -> "DDIMSolver":
self.ddim_timesteps = self.ddim_timesteps.to(device)
self.ddim_alpha_cumprods = self.ddim_alpha_cumprods.to(device)
self.ddim_alpha_cumprods_prev = self.ddim_alpha_cumprods_prev.to(device)
return self
def ddim_step(self, pred_x0: torch.Tensor, pred_noise: torch.Tensor,
timestep_index: torch.Tensor) -> torch.Tensor:
alpha_cumprod_prev = extract_into_tensor(self.ddim_alpha_cumprods_prev, timestep_index, pred_x0.shape)
dir_xt = (1.0 - alpha_cumprod_prev).sqrt() * pred_noise
x_prev = alpha_cumprod_prev.sqrt() * pred_x0 + dir_xt
return x_prev
@torch.no_grad()
def update_ema(target_params: Generator, source_params: Generator, rate: float = 0.99) -> None:
for tgt, src in zip(target_params, source_params):
tgt.detach().mul_(rate).add_(src, alpha=1 - rate)
def main():
cfg = parse_args()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
set_seed(cfg.SEED_VALUE)
name_time_str = osp.join(cfg.NAME, datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S"))
cfg.output_dir = osp.join(cfg.FOLDER, name_time_str)
os.makedirs(cfg.output_dir, exist_ok=False)
os.makedirs(f"{cfg.output_dir}/checkpoints", exist_ok=False)
if cfg.vis == "tb":
writer = SummaryWriter(cfg.output_dir)
elif cfg.vis == "swanlab":
writer = swanlab.init(project="MotionLCM",
experiment_name=os.path.normpath(cfg.output_dir).replace(os.path.sep, "-"),
suffix=None, config=dict(**cfg), logdir=cfg.output_dir)
else:
raise ValueError(f"Invalid vis method: {cfg.vis}")
stream_handler = logging.StreamHandler(sys.stdout)
file_handler = logging.FileHandler(osp.join(cfg.output_dir, 'output.log'))
handlers = [file_handler, stream_handler]
logging.basicConfig(level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=handlers)
logger = logging.getLogger(__name__)
OmegaConf.save(cfg, osp.join(cfg.output_dir, 'config.yaml'))
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
logger.info(f'Training guidance scale range (w): [{cfg.TRAIN.w_min}, {cfg.TRAIN.w_max}]')
logger.info(f'EMA rate (mu): {cfg.TRAIN.ema_decay}')
logger.info(f'Skipping interval (k): {cfg.model.scheduler.params.num_train_timesteps / cfg.TRAIN.num_ddim_timesteps}')
logger.info(f'Loss type (huber or l2): {cfg.TRAIN.loss_type}')
dataset = get_dataset(cfg)
train_dataloader = dataset.train_dataloader()
val_dataloader = dataset.val_dataloader()
state_dict = torch.load(cfg.TRAIN.PRETRAINED, map_location="cpu")["state_dict"]
base_model = MLD(cfg, dataset)
logger.info(f"Loading pretrained model: {cfg.TRAIN.PRETRAINED}")
logger.info(base_model.load_state_dict(state_dict))
scheduler = base_model.scheduler
alpha_schedule = torch.sqrt(scheduler.alphas_cumprod)
sigma_schedule = torch.sqrt(1 - scheduler.alphas_cumprod)
solver = DDIMSolver(
scheduler.alphas_cumprod.numpy(),
timesteps=scheduler.config.num_train_timesteps,
ddim_timesteps=cfg.TRAIN.num_ddim_timesteps)
base_model.to(device)
vae = base_model.vae
text_encoder = base_model.text_encoder
teacher_unet = base_model.denoiser
base_model.denoiser = None
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
teacher_unet.requires_grad_(False)
# Apply CFG here (Important!!!)
cfg.model.denoiser.params.time_cond_proj_dim = cfg.TRAIN.unet_time_cond_proj_dim
unet = instantiate_from_config(cfg.model.denoiser)
logger.info(f'Loading pretrained model for [unet]')
logger.info(unet.load_state_dict(teacher_unet.state_dict(), strict=False))
target_unet = instantiate_from_config(cfg.model.denoiser)
logger.info(f'Loading pretrained model for [target_unet]')
logger.info(target_unet.load_state_dict(teacher_unet.state_dict(), strict=False))
unet = unet.to(device)
target_unet = target_unet.to(device)
target_unet.requires_grad_(False)
# Also move the alpha and sigma noise schedules to device
alpha_schedule = alpha_schedule.to(device)
sigma_schedule = sigma_schedule.to(device)
solver = solver.to(device)
optimizer = torch.optim.AdamW(
unet.parameters(),
lr=cfg.TRAIN.learning_rate,
betas=(cfg.TRAIN.adam_beta1, cfg.TRAIN.adam_beta2),
weight_decay=cfg.TRAIN.adam_weight_decay,
eps=cfg.TRAIN.adam_epsilon)
if cfg.TRAIN.max_train_steps == -1:
assert cfg.TRAIN.max_train_epochs != -1
cfg.TRAIN.max_train_steps = cfg.TRAIN.max_train_epochs * len(train_dataloader)
if cfg.TRAIN.checkpointing_steps == -1:
assert cfg.TRAIN.checkpointing_epochs != -1
cfg.TRAIN.checkpointing_steps = cfg.TRAIN.checkpointing_epochs * len(train_dataloader)
if cfg.TRAIN.validation_steps == -1:
assert cfg.TRAIN.validation_epochs != -1
cfg.TRAIN.validation_steps = cfg.TRAIN.validation_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
cfg.TRAIN.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.TRAIN.lr_warmup_steps,
num_training_steps=cfg.TRAIN.max_train_steps)
uncond_prompt_embeds = text_encoder([""] * cfg.TRAIN.BATCH_SIZE)
# Train!
logger.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataloader.dataset)}")
logging.info(f" Num Epochs = {cfg.TRAIN.max_train_epochs}")
logging.info(f" Instantaneous batch size per device = {cfg.TRAIN.BATCH_SIZE}")
logging.info(f" Total optimization steps = {cfg.TRAIN.max_train_steps}")
global_step = 0
@torch.no_grad()
def validation(ema: bool = False) -> tuple:
base_model.denoiser = target_unet if ema else unet
base_model.eval()
for val_batch in tqdm(val_dataloader):
val_batch = move_batch_to_device(val_batch, device)
base_model.allsplit_step(split='test', batch=val_batch)
metrics = base_model.allsplit_epoch_end()
max_val_rp1 = metrics['Metrics/R_precision_top_1']
min_val_fid = metrics['Metrics/FID']
print_table(f'Validation@Step-{global_step}', metrics)
for k, v in metrics.items():
k = k + '_EMA' if ema else k
if cfg.vis == "tb":
writer.add_scalar(k, v, global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({k: v}, step=global_step)
base_model.train()
base_model.denoiser = unet
return max_val_rp1, min_val_fid
max_rp1, min_fid = validation()
# validation(ema=True)
progress_bar = tqdm(range(0, cfg.TRAIN.max_train_steps), desc="Steps")
while True:
for step, batch in enumerate(train_dataloader):
batch = move_batch_to_device(batch, device)
feats_ref = batch["motion"]
text = batch['text']
mask = batch['mask']
# Encode motions to latents
with torch.no_grad():
latents, _ = vae.encode(feats_ref, mask)
prompt_embeds = text_encoder(text)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image t_n ~ U[0, N - k - 1] without bias.
topk = scheduler.config.num_train_timesteps // cfg.TRAIN.num_ddim_timesteps
index = torch.randint(0, cfg.TRAIN.num_ddim_timesteps, (bsz,), device=latents.device).long()
start_timesteps = solver.ddim_timesteps[index]
timesteps = start_timesteps - topk
timesteps = torch.where(timesteps < 0, torch.zeros_like(timesteps), timesteps)
# Get boundary scalings for start_timesteps and (end) timesteps.
c_skip_start, c_out_start = scalings_for_boundary_conditions(start_timesteps)
c_skip_start, c_out_start = [append_dims(x, latents.ndim) for x in [c_skip_start, c_out_start]]
c_skip, c_out = scalings_for_boundary_conditions(timesteps)
c_skip, c_out = [append_dims(x, latents.ndim) for x in [c_skip, c_out]]
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process) [z_{t_{n + k}} in Algorithm 1]
noisy_model_input = scheduler.add_noise(latents, noise, start_timesteps)
# Sample a random guidance scale w from U[w_min, w_max] and embed it
w = (cfg.TRAIN.w_max - cfg.TRAIN.w_min) * torch.rand((bsz,)) + cfg.TRAIN.w_min
w_embedding = guidance_scale_embedding(w, embedding_dim=cfg.TRAIN.unet_time_cond_proj_dim)
w = append_dims(w, latents.ndim)
# Move to U-Net device and dtype
w = w.to(device=latents.device, dtype=latents.dtype)
w_embedding = w_embedding.to(device=latents.device, dtype=latents.dtype)
# Get online LCM prediction on z_{t_{n + k}}, w, c, t_{n + k}
noise_pred = unet(
noisy_model_input,
start_timesteps,
timestep_cond=w_embedding,
encoder_hidden_states=prompt_embeds)[0]
pred_x_0 = predicted_origin(
noise_pred,
start_timesteps,
noisy_model_input,
scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule)
model_pred = c_skip_start * noisy_model_input + c_out_start * pred_x_0
# Use the ODE solver to predict the k-th step in the augmented PF-ODE trajectory after
# noisy_latents with both the conditioning embedding c and unconditional embedding 0
# Get teacher model prediction on noisy_latents and conditional embedding
with torch.no_grad():
cond_teacher_output = teacher_unet(
noisy_model_input,
start_timesteps,
encoder_hidden_states=prompt_embeds)[0]
cond_pred_x0 = predicted_origin(
cond_teacher_output,
start_timesteps,
noisy_model_input,
scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule)
# Get teacher model prediction on noisy_latents and unconditional embedding
uncond_teacher_output = teacher_unet(
noisy_model_input,
start_timesteps,
encoder_hidden_states=uncond_prompt_embeds[:bsz])[0]
uncond_pred_x0 = predicted_origin(
uncond_teacher_output,
start_timesteps,
noisy_model_input,
scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule)
# Perform "CFG" to get z_prev estimate (using the LCM paper's CFG formulation)
pred_x0 = cond_pred_x0 + w * (cond_pred_x0 - uncond_pred_x0)
pred_noise = cond_teacher_output + w * (cond_teacher_output - uncond_teacher_output)
x_prev = solver.ddim_step(pred_x0, pred_noise, index)
# Get target LCM prediction on z_prev, w, c, t_n
with torch.no_grad():
target_noise_pred = target_unet(
x_prev.float(),
timesteps,
timestep_cond=w_embedding,
encoder_hidden_states=prompt_embeds)[0]
pred_x_0 = predicted_origin(
target_noise_pred,
timesteps,
x_prev,
scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule)
target = c_skip * x_prev + c_out * pred_x_0
# Calculate loss
if cfg.TRAIN.loss_type == "l2":
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
elif cfg.TRAIN.loss_type == "huber":
loss = torch.mean(
torch.sqrt(
(model_pred.float() - target.float()) ** 2 + cfg.TRAIN.huber_c ** 2) - cfg.TRAIN.huber_c
)
else:
raise ValueError(f'Unknown loss type: {cfg.TRAIN.loss_type}.')
# Back propagate on the online student model (`unet`)
loss.backward()
torch.nn.utils.clip_grad_norm_(unet.parameters(), cfg.TRAIN.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Make EMA update to target student model parameters
update_ema(target_unet.parameters(), unet.parameters(), cfg.TRAIN.ema_decay)
progress_bar.update(1)
global_step += 1
if global_step % cfg.TRAIN.checkpointing_steps == 0:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-{global_step}.ckpt")
ckpt = dict(state_dict=base_model.state_dict())
base_model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path}")
if global_step % cfg.TRAIN.validation_steps == 0:
cur_rp1, cur_fid = validation()
# validation(ema=True)
if cur_rp1 > max_rp1:
max_rp1 = cur_rp1
save_path = os.path.join(cfg.output_dir, 'checkpoints',
f"checkpoint-{global_step}-rp1-{round(cur_rp1, 3)}.ckpt")
ckpt = dict(state_dict=base_model.state_dict())
base_model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with rp1:{round(cur_rp1, 3)}")
if cur_fid < min_fid:
min_fid = cur_fid
save_path = os.path.join(cfg.output_dir, 'checkpoints',
f"checkpoint-{global_step}-fid-{round(cur_fid, 3)}.ckpt")
ckpt = dict(state_dict=base_model.state_dict())
base_model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
logger.info(f"Saved state to {save_path} with fid:{round(cur_fid, 3)}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if cfg.vis == "tb":
writer.add_scalar('loss', logs['loss'], global_step=global_step)
writer.add_scalar('lr', logs['lr'], global_step=global_step)
elif cfg.vis == "swanlab":
writer.log({'loss': logs['loss'], 'lr': logs['lr']}, step=global_step)
if global_step >= cfg.TRAIN.max_train_steps:
save_path = os.path.join(cfg.output_dir, 'checkpoints', f"checkpoint-last.ckpt")
ckpt = dict(state_dict=base_model.state_dict())
base_model.on_save_checkpoint(ckpt)
torch.save(ckpt, save_path)
exit(0)
if __name__ == "__main__":
main()
|