File size: 8,780 Bytes
eb339cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from typing import Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from .utils import get_clones, get_activation_fn


class SparseMoeMLP(nn.Module):
    def __init__(self, d_model: int, dim_feedforward: int, dropout: float, activation: str) -> None:
        super(SparseMoeMLP, self).__init__()
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.activation = get_activation_fn(activation)
        self.linear2 = nn.Linear(dim_feedforward, d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        return self.linear2(self.dropout(self.activation(self.linear1(hidden_states))))


class SparseMoeBlock(nn.Module):
    def __init__(self, d_model: int, dim_feedforward: int, dropout: float, activation: str,
                 num_experts: int, topk: int, jitter_noise: Optional[float] = None) -> None:
        super(SparseMoeBlock, self).__init__()
        self.topk = topk
        self.num_experts = num_experts
        self.jitter_noise = jitter_noise

        self.gate = nn.Linear(d_model, num_experts)
        self.experts = get_clones(SparseMoeMLP(d_model, dim_feedforward, dropout, activation), num_experts)

    def forward(self, hidden_states: torch.Tensor) -> tuple:
        sequence_length, batch_size, hidden_dim = hidden_states.shape
        if self.training and self.jitter_noise is not None:
            hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)

        hidden_states = hidden_states.view(-1, hidden_dim)
        router_logits = self.gate(hidden_states)
        routing_weights = F.softmax(router_logits, dim=-1)
        routing_weights, selected_experts = torch.topk(routing_weights, self.topk, dim=-1)
        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        final_hidden_states = torch.zeros(
            (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
        )
        expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(expert_mask[expert_idx])
            current_state = hidden_states[top_x]
            current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
            final_hidden_states.index_add_(0, top_x, current_hidden_states)
        final_hidden_states = final_hidden_states.reshape(sequence_length, batch_size, hidden_dim)
        return final_hidden_states, router_logits


class MoeTransformerEncoderLayer(nn.Module):

    def __init__(self, d_model: int, nhead: int, num_experts: int, topk: int, dim_feedforward: int = 2048,
                 dropout: float = 0.1, activation: str = "relu", normalize_before: bool = False,
                 norm_eps: float = 1e-5, jitter_noise: Optional[float] = None) -> None:
        super(MoeTransformerEncoderLayer, self).__init__()
        self.d_model = d_model
        self.normalize_before = normalize_before

        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.moe = SparseMoeBlock(
            d_model, dim_feedforward, dropout, activation,
            num_experts=num_experts, topk=topk, jitter_noise=jitter_noise
        )
        self.norm1 = nn.LayerNorm(d_model, eps=norm_eps)
        self.norm2 = nn.LayerNorm(d_model, eps=norm_eps)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

    def forward_post(self,
                     src: torch.Tensor,
                     src_mask: Optional[torch.Tensor] = None,
                     src_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        src2 = self.self_attn(src, src, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2, logits = self.moe(src)
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src, logits

    def forward_pre(self,
                    src: torch.Tensor,
                    src_mask: Optional[torch.Tensor] = None,
                    src_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        src2 = self.norm1(src)
        src2 = self.self_attn(src2, src2, value=src2, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2, logits = self.moe(src2)
        src = src + self.dropout2(src2)
        return src, logits

    def forward(self,
                src: torch.Tensor,
                src_mask: Optional[torch.Tensor] = None,
                src_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask)
        return self.forward_post(src, src_mask, src_key_padding_mask)


class MoeTransformerDecoderLayer(nn.Module):

    def __init__(self, d_model: int, nhead: int, num_experts: int, topk: int, dim_feedforward: int = 2048,
                 dropout: float = 0.1, activation: str = "relu", normalize_before: bool = False,
                 norm_eps: float = 1e-5, jitter_noise: Optional[float] = None) -> None:
        super(MoeTransformerDecoderLayer, self).__init__()
        self.d_model = d_model
        self.normalize_before = normalize_before

        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)

        self.moe = SparseMoeBlock(
            d_model, dim_feedforward, dropout, activation,
            num_experts=num_experts, topk=topk, jitter_noise=jitter_noise
        )

        self.norm1 = nn.LayerNorm(d_model, eps=norm_eps)
        self.norm2 = nn.LayerNorm(d_model, eps=norm_eps)
        self.norm3 = nn.LayerNorm(d_model, eps=norm_eps)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

    def forward_post(self,
                     tgt: torch.Tensor,
                     memory: torch.Tensor,
                     tgt_mask: Optional[torch.Tensor] = None,
                     memory_mask: Optional[torch.Tensor] = None,
                     tgt_key_padding_mask: Optional[torch.Tensor] = None,
                     memory_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        tgt2 = self.self_attn(tgt, tgt, value=tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(query=tgt, key=memory, value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2, logits = self.moe(tgt)
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt, logits

    def forward_pre(self,
                    tgt: torch.Tensor,
                    memory: torch.Tensor,
                    tgt_mask: Optional[torch.Tensor] = None,
                    memory_mask: Optional[torch.Tensor] = None,
                    tgt_key_padding_mask: Optional[torch.Tensor] = None,
                    memory_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        tgt2 = self.norm1(tgt)
        tgt2 = self.self_attn(tgt2, tgt2, value=tgt2, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt2 = self.norm2(tgt)
        tgt2 = self.multihead_attn(query=tgt2, key=memory, value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt2 = self.norm3(tgt)
        tgt2, logits = self.moe(tgt2)
        tgt = tgt + self.dropout3(tgt2)
        return tgt, logits

    def forward(self,
                tgt: torch.Tensor,
                memory: torch.Tensor,
                tgt_mask: Optional[torch.Tensor] = None,
                memory_mask: Optional[torch.Tensor] = None,
                tgt_key_padding_mask: Optional[torch.Tensor] = None,
                memory_key_padding_mask: Optional[torch.Tensor] = None) -> tuple:
        if self.normalize_before:
            return self.forward_pre(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)
        return self.forward_post(tgt, memory, tgt_mask, memory_mask, tgt_key_padding_mask, memory_key_padding_mask)