Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -527,6 +527,154 @@ class Drag:
|
|
| 527 |
return val_save_dir
|
| 528 |
|
| 529 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
if __name__ == "__main__":
|
| 531 |
|
| 532 |
args = get_args()
|
|
@@ -564,153 +712,6 @@ if __name__ == "__main__":
|
|
| 564 |
last_frame_path = gr.State()
|
| 565 |
tracking_points = gr.State([])
|
| 566 |
|
| 567 |
-
def reset_states(first_frame_path, last_frame_path, tracking_points):
|
| 568 |
-
first_frame_path = gr.State()
|
| 569 |
-
last_frame_path = gr.State()
|
| 570 |
-
tracking_points = gr.State([])
|
| 571 |
-
|
| 572 |
-
return first_frame_path, last_frame_path, tracking_points
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
def preprocess_image(image):
|
| 576 |
-
|
| 577 |
-
image_pil = image2pil(image.name)
|
| 578 |
-
|
| 579 |
-
raw_w, raw_h = image_pil.size
|
| 580 |
-
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
| 581 |
-
# image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
| 582 |
-
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
|
| 583 |
-
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
| 584 |
-
|
| 585 |
-
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
| 586 |
-
|
| 587 |
-
image_pil.save(first_frame_path)
|
| 588 |
-
|
| 589 |
-
return first_frame_path, first_frame_path, gr.State([])
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
def preprocess_image_end(image_end):
|
| 593 |
-
|
| 594 |
-
image_end_pil = image2pil(image_end.name)
|
| 595 |
-
|
| 596 |
-
raw_w, raw_h = image_end_pil.size
|
| 597 |
-
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
| 598 |
-
# image_end_pil = image_end_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
| 599 |
-
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
|
| 600 |
-
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
|
| 601 |
-
|
| 602 |
-
last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png")
|
| 603 |
-
|
| 604 |
-
image_end_pil.save(last_frame_path)
|
| 605 |
-
|
| 606 |
-
return last_frame_path, last_frame_path, gr.State([])
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
def add_drag(tracking_points):
|
| 610 |
-
tracking_points.constructor_args['value'].append([])
|
| 611 |
-
return tracking_points
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
| 615 |
-
tracking_points.constructor_args['value'].pop()
|
| 616 |
-
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 617 |
-
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 618 |
-
w, h = transparent_background.size
|
| 619 |
-
transparent_layer = np.zeros((h, w, 4))
|
| 620 |
-
|
| 621 |
-
for track in tracking_points.constructor_args['value']:
|
| 622 |
-
if len(track) > 1:
|
| 623 |
-
for i in range(len(track)-1):
|
| 624 |
-
start_point = track[i]
|
| 625 |
-
end_point = track[i+1]
|
| 626 |
-
vx = end_point[0] - start_point[0]
|
| 627 |
-
vy = end_point[1] - start_point[1]
|
| 628 |
-
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 629 |
-
if i == len(track)-2:
|
| 630 |
-
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 631 |
-
else:
|
| 632 |
-
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 633 |
-
else:
|
| 634 |
-
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 635 |
-
|
| 636 |
-
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 637 |
-
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 638 |
-
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 639 |
-
|
| 640 |
-
return tracking_points, trajectory_map, trajectory_map_end
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
| 644 |
-
tracking_points.constructor_args['value'][-1].pop()
|
| 645 |
-
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 646 |
-
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 647 |
-
w, h = transparent_background.size
|
| 648 |
-
transparent_layer = np.zeros((h, w, 4))
|
| 649 |
-
|
| 650 |
-
for track in tracking_points.constructor_args['value']:
|
| 651 |
-
if len(track) > 1:
|
| 652 |
-
for i in range(len(track)-1):
|
| 653 |
-
start_point = track[i]
|
| 654 |
-
end_point = track[i+1]
|
| 655 |
-
vx = end_point[0] - start_point[0]
|
| 656 |
-
vy = end_point[1] - start_point[1]
|
| 657 |
-
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 658 |
-
if i == len(track)-2:
|
| 659 |
-
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 660 |
-
else:
|
| 661 |
-
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 662 |
-
else:
|
| 663 |
-
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 664 |
-
|
| 665 |
-
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 666 |
-
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 667 |
-
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 668 |
-
|
| 669 |
-
return tracking_points, trajectory_map, trajectory_map_end
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
|
| 673 |
-
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
| 674 |
-
tracking_points.constructor_args['value'][-1].append(evt.index)
|
| 675 |
-
|
| 676 |
-
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 677 |
-
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 678 |
-
|
| 679 |
-
w, h = transparent_background.size
|
| 680 |
-
transparent_layer = 0
|
| 681 |
-
for idx, track in enumerate(tracking_points.constructor_args['value']):
|
| 682 |
-
# mask = cv2.imread(
|
| 683 |
-
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
|
| 684 |
-
# )
|
| 685 |
-
mask = np.zeros((320, 512, 3))
|
| 686 |
-
color = color_list[idx+1]
|
| 687 |
-
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
| 688 |
-
|
| 689 |
-
if len(track) > 1:
|
| 690 |
-
for i in range(len(track)-1):
|
| 691 |
-
start_point = track[i]
|
| 692 |
-
end_point = track[i+1]
|
| 693 |
-
vx = end_point[0] - start_point[0]
|
| 694 |
-
vy = end_point[1] - start_point[1]
|
| 695 |
-
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 696 |
-
if i == len(track)-2:
|
| 697 |
-
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 698 |
-
else:
|
| 699 |
-
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 700 |
-
else:
|
| 701 |
-
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 702 |
-
|
| 703 |
-
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 704 |
-
alpha_coef = 0.99
|
| 705 |
-
im2_data = transparent_layer.getdata()
|
| 706 |
-
new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
|
| 707 |
-
transparent_layer.putdata(new_im2_data)
|
| 708 |
-
|
| 709 |
-
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 710 |
-
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 711 |
-
|
| 712 |
-
return tracking_points, trajectory_map, trajectory_map_end
|
| 713 |
-
|
| 714 |
with gr.Row():
|
| 715 |
with gr.Column(scale=1):
|
| 716 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
|
@@ -798,4 +799,4 @@ if __name__ == "__main__":
|
|
| 798 |
|
| 799 |
run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video)
|
| 800 |
|
| 801 |
-
|
|
|
|
| 527 |
return val_save_dir
|
| 528 |
|
| 529 |
|
| 530 |
+
def reset_states(first_frame_path, last_frame_path, tracking_points):
|
| 531 |
+
first_frame_path = gr.State()
|
| 532 |
+
last_frame_path = gr.State()
|
| 533 |
+
tracking_points = gr.State([])
|
| 534 |
+
|
| 535 |
+
return first_frame_path, last_frame_path, tracking_points
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def preprocess_image(image):
|
| 539 |
+
|
| 540 |
+
image_pil = image2pil(image.name)
|
| 541 |
+
|
| 542 |
+
raw_w, raw_h = image_pil.size
|
| 543 |
+
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
| 544 |
+
# image_pil = image_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
| 545 |
+
# image_pil = transforms.CenterCrop((320, 512))(image_pil.convert('RGB'))
|
| 546 |
+
image_pil = image_pil.resize((512, 320), Image.BILINEAR)
|
| 547 |
+
|
| 548 |
+
first_frame_path = os.path.join(args.output_dir, f"first_frame_{str(uuid.uuid4())[:4]}.png")
|
| 549 |
+
|
| 550 |
+
image_pil.save(first_frame_path)
|
| 551 |
+
|
| 552 |
+
return first_frame_path, first_frame_path, gr.State([])
|
| 553 |
+
|
| 554 |
+
|
| 555 |
+
def preprocess_image_end(image_end):
|
| 556 |
+
|
| 557 |
+
image_end_pil = image2pil(image_end.name)
|
| 558 |
+
|
| 559 |
+
raw_w, raw_h = image_end_pil.size
|
| 560 |
+
# resize_ratio = max(512 / raw_w, 320 / raw_h)
|
| 561 |
+
# image_end_pil = image_end_pil.resize((int(raw_w * resize_ratio), int(raw_h * resize_ratio)), Image.BILINEAR)
|
| 562 |
+
# image_end_pil = transforms.CenterCrop((320, 512))(image_end_pil.convert('RGB'))
|
| 563 |
+
image_end_pil = image_end_pil.resize((512, 320), Image.BILINEAR)
|
| 564 |
+
|
| 565 |
+
last_frame_path = os.path.join(args.output_dir, f"last_frame_{str(uuid.uuid4())[:4]}.png")
|
| 566 |
+
|
| 567 |
+
image_end_pil.save(last_frame_path)
|
| 568 |
+
|
| 569 |
+
return last_frame_path, last_frame_path, gr.State([])
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
def add_drag(tracking_points):
|
| 573 |
+
tracking_points.constructor_args['value'].append([])
|
| 574 |
+
return tracking_points
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def delete_last_drag(tracking_points, first_frame_path, last_frame_path):
|
| 578 |
+
tracking_points.constructor_args['value'].pop()
|
| 579 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 580 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 581 |
+
w, h = transparent_background.size
|
| 582 |
+
transparent_layer = np.zeros((h, w, 4))
|
| 583 |
+
|
| 584 |
+
for track in tracking_points.constructor_args['value']:
|
| 585 |
+
if len(track) > 1:
|
| 586 |
+
for i in range(len(track)-1):
|
| 587 |
+
start_point = track[i]
|
| 588 |
+
end_point = track[i+1]
|
| 589 |
+
vx = end_point[0] - start_point[0]
|
| 590 |
+
vy = end_point[1] - start_point[1]
|
| 591 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 592 |
+
if i == len(track)-2:
|
| 593 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 594 |
+
else:
|
| 595 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 596 |
+
else:
|
| 597 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 598 |
+
|
| 599 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 600 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 601 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 602 |
+
|
| 603 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
| 604 |
+
|
| 605 |
+
|
| 606 |
+
def delete_last_step(tracking_points, first_frame_path, last_frame_path):
|
| 607 |
+
tracking_points.constructor_args['value'][-1].pop()
|
| 608 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 609 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 610 |
+
w, h = transparent_background.size
|
| 611 |
+
transparent_layer = np.zeros((h, w, 4))
|
| 612 |
+
|
| 613 |
+
for track in tracking_points.constructor_args['value']:
|
| 614 |
+
if len(track) > 1:
|
| 615 |
+
for i in range(len(track)-1):
|
| 616 |
+
start_point = track[i]
|
| 617 |
+
end_point = track[i+1]
|
| 618 |
+
vx = end_point[0] - start_point[0]
|
| 619 |
+
vy = end_point[1] - start_point[1]
|
| 620 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 621 |
+
if i == len(track)-2:
|
| 622 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 623 |
+
else:
|
| 624 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 625 |
+
else:
|
| 626 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 627 |
+
|
| 628 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 629 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 630 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 631 |
+
|
| 632 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
def add_tracking_points(tracking_points, first_frame_path, last_frame_path, evt: gr.SelectData): # SelectData is a subclass of EventData
|
| 636 |
+
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
|
| 637 |
+
tracking_points.constructor_args['value'][-1].append(evt.index)
|
| 638 |
+
|
| 639 |
+
transparent_background = Image.open(first_frame_path).convert('RGBA')
|
| 640 |
+
transparent_background_end = Image.open(last_frame_path).convert('RGBA')
|
| 641 |
+
|
| 642 |
+
w, h = transparent_background.size
|
| 643 |
+
transparent_layer = 0
|
| 644 |
+
for idx, track in enumerate(tracking_points.constructor_args['value']):
|
| 645 |
+
# mask = cv2.imread(
|
| 646 |
+
# os.path.join(args.output_dir, f"mask_{idx+1}.jpg")
|
| 647 |
+
# )
|
| 648 |
+
mask = np.zeros((320, 512, 3))
|
| 649 |
+
color = color_list[idx+1]
|
| 650 |
+
transparent_layer = mask[:, :, 0].reshape(h, w, 1) * color.reshape(1, 1, -1) + transparent_layer
|
| 651 |
+
|
| 652 |
+
if len(track) > 1:
|
| 653 |
+
for i in range(len(track)-1):
|
| 654 |
+
start_point = track[i]
|
| 655 |
+
end_point = track[i+1]
|
| 656 |
+
vx = end_point[0] - start_point[0]
|
| 657 |
+
vy = end_point[1] - start_point[1]
|
| 658 |
+
arrow_length = np.sqrt(vx**2 + vy**2)
|
| 659 |
+
if i == len(track)-2:
|
| 660 |
+
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
|
| 661 |
+
else:
|
| 662 |
+
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
|
| 663 |
+
else:
|
| 664 |
+
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
|
| 665 |
+
|
| 666 |
+
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
|
| 667 |
+
alpha_coef = 0.99
|
| 668 |
+
im2_data = transparent_layer.getdata()
|
| 669 |
+
new_im2_data = [(r, g, b, int(a * alpha_coef)) for r, g, b, a in im2_data]
|
| 670 |
+
transparent_layer.putdata(new_im2_data)
|
| 671 |
+
|
| 672 |
+
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
|
| 673 |
+
trajectory_map_end = Image.alpha_composite(transparent_background_end, transparent_layer)
|
| 674 |
+
|
| 675 |
+
return tracking_points, trajectory_map, trajectory_map_end
|
| 676 |
+
|
| 677 |
+
|
| 678 |
if __name__ == "__main__":
|
| 679 |
|
| 680 |
args = get_args()
|
|
|
|
| 712 |
last_frame_path = gr.State()
|
| 713 |
tracking_points = gr.State([])
|
| 714 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
with gr.Row():
|
| 716 |
with gr.Column(scale=1):
|
| 717 |
image_upload_button = gr.UploadButton(label="Upload Start Image", file_types=["image"])
|
|
|
|
| 799 |
|
| 800 |
run_button.click(Framer.run, [first_frame_path, last_frame_path, tracking_points, controlnet_cond_scale, motion_bucket_id], output_video)
|
| 801 |
|
| 802 |
+
demo.launch()
|