sync with remote
Browse files- app.py +85 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.tree import DecisionTreeRegressor
|
6 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
7 |
+
import pickle
|
8 |
+
from huggingface_hub import HfApi, HfFolder
|
9 |
+
|
10 |
+
# Load the dataset
|
11 |
+
df = pd.read_csv('advertising.csv')
|
12 |
+
|
13 |
+
# Display the dataset
|
14 |
+
st.write("## Advertising Dataset")
|
15 |
+
st.write(df)
|
16 |
+
|
17 |
+
# Scatter plots
|
18 |
+
fig, axs = plt.subplots(1, 3, figsize=(15, 5))
|
19 |
+
axs[0].scatter(df['TV'], df['Sales'])
|
20 |
+
axs[0].set_xlabel('TV')
|
21 |
+
axs[0].set_ylabel('Sales')
|
22 |
+
axs[0].set_title('TV vs Sales')
|
23 |
+
|
24 |
+
axs[1].scatter(df['Radio'], df['Sales'])
|
25 |
+
axs[1].set_xlabel('Radio')
|
26 |
+
axs[1].set_ylabel('Sales')
|
27 |
+
axs[1].set_title('Radio vs Sales')
|
28 |
+
|
29 |
+
axs[2].scatter(df['Newspaper'], df['Sales'])
|
30 |
+
axs[2].set_xlabel('Newspaper')
|
31 |
+
axs[2].set_ylabel('Sales')
|
32 |
+
axs[2].set_title('Newspaper vs Sales')
|
33 |
+
|
34 |
+
st.pyplot(fig)
|
35 |
+
|
36 |
+
# Split the data into training and testing sets
|
37 |
+
X = df[['TV', 'Radio', 'Newspaper']]
|
38 |
+
y = df['Sales']
|
39 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
40 |
+
|
41 |
+
# Train the decision tree regressor
|
42 |
+
regressor = DecisionTreeRegressor(random_state=42)
|
43 |
+
regressor.fit(X_train, y_train)
|
44 |
+
|
45 |
+
# Predict on the test set
|
46 |
+
y_pred = regressor.predict(X_test)
|
47 |
+
|
48 |
+
# Calculate performance metrics
|
49 |
+
mse = mean_squared_error(y_test, y_pred)
|
50 |
+
r2 = r2_score(y_test, y_pred)
|
51 |
+
|
52 |
+
# Display performance metrics
|
53 |
+
st.write("## Model Performance")
|
54 |
+
st.write(f"Mean Squared Error: {mse}")
|
55 |
+
st.write(f"R-squared: {r2}")
|
56 |
+
|
57 |
+
# Save the trained model as a pickle file
|
58 |
+
model_path = 'decision_tree_regressor.pkl'
|
59 |
+
with open(model_path, 'wb') as f:
|
60 |
+
pickle.dump(regressor, f)
|
61 |
+
|
62 |
+
# About this app section
|
63 |
+
with st.expander("About This App"):
|
64 |
+
st.write("""
|
65 |
+
This app reads the advertising dataset and trains a decision tree regressor to predict sales based on TV, Radio, and Newspaper advertising budgets.
|
66 |
+
The dataset is sourced from Kaggle and contains information on advertising budgets and sales for a product.
|
67 |
+
The app displays scatter plots of TV vs Sales, Radio vs Sales, and Newspaper vs Sales.
|
68 |
+
After training the model, the app displays the performance metrics of the model.
|
69 |
+
The trained model is saved as a pickle file for future use.
|
70 |
+
""")
|
71 |
+
|
72 |
+
# Code to upload the trained model to Hugging Face using huggingface_hub
|
73 |
+
hf_token = os.getenv("HF_TOKEN")
|
74 |
+
repo_id = "wvsu-dti-aidev-team/advertising_knn_regressor_model"
|
75 |
+
|
76 |
+
api = HfApi()
|
77 |
+
api.upload_file(
|
78 |
+
path_or_fileobj=model_path,
|
79 |
+
path_in_repo=model_path,
|
80 |
+
repo_id=repo_id,
|
81 |
+
repo_type="model",
|
82 |
+
token=hf_token
|
83 |
+
)
|
84 |
+
|
85 |
+
st.write("Model uploaded successfully!")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
pandas
|
3 |
+
matplotlib
|
4 |
+
scikit-learn
|
5 |
+
requests
|
6 |
+
huggingface_hub
|