File size: 1,035 Bytes
d506fd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
import gradio as gr
from datasets import Dataset
from huggingface_hub import HfApi, HfFolder
# Get the Hugging Face token from the environment variable
hf_token = os.getenv("HF_TOKEN")
def upload_to_huggingface(file):
# Load the CSV file into a Hugging Face Dataset
dataset = Dataset.from_csv(file.name)
# Authenticate using the Hugging Face token
api = HfApi()
api.upload_file(
path_or_fileobj=file.name,
path_in_repo="advertising.csv",
repo_id="wvsu-dti-aidev-team/advertising_sales_regression",
repo_type="dataset",
token=hf_token
)
return "Dataset uploaded successfully!"
# Create a Gradio interface
iface = gr.Interface(
fn=upload_to_huggingface,
inputs=gr.File(label="Upload CSV File"),
outputs="text",
title="Upload Dataset to Hugging Face",
description="Upload the advertising.csv dataset to the Hugging Face Hub repository wvsu-dti-aidev-team/advertising_sales_regression."
)
# Launch the Gradio app
iface.launch() |