myr1 / app.py
wuhp's picture
Update app.py
4cf237b verified
raw
history blame
5.56 kB
import gradio as gr
import spaces
from datasets import load_dataset
import torch
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline
)
##############################################################################
# GLOBALS / ZERO-GPU APPROACH
##############################################################################
# We store a global pipeline after finetuning (if any).
TEXT_PIPELINE = None
# We'll train on only 50 examples from WikiText-2 to keep it short.
NUM_EXAMPLES = 50
@spaces.GPU(duration=600) # up to 600 seconds (10 minutes) for mini-finetraining
def finetune_small_subset():
"""
1) Loads 'wuhp/myr1' in 8-bit,
2) Takes 50 examples from WikiText-2,
3) Finetunes for 1 epoch,
4) Saves to 'finetuned_myr1/',
5) Reloads the new model into a pipeline for inference.
"""
# 1) Load dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
# Keep only 50 to fit ephemeral GPU time
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
# 2) Load config, tokenizer, model
config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
# 8-bit loading via bitsandbytes
model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
load_in_8bit=True, # <--- 8-bit
device_map="auto", # let HF manage device placement
trust_remote_code=True
)
# 3) Tokenize
def tokenize_fn(ex):
return tokenizer(ex["text"], truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# 4) TrainingArguments: no fp16 to avoid half-precision gradient issues
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=10,
save_steps=999999, # skip mid-training saves
save_total_limit=1,
fp16=False, # <--- disable FP16
)
# 5) Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
# 6) Train
trainer.train()
# 7) Save final model
trainer.save_model("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
# 8) Reload the newly finetuned model as a pipeline (for inference)
finetuned_model = AutoModelForCausalLM.from_pretrained(
"finetuned_myr1",
device_map="auto",
trust_remote_code=True
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
return "Finetuning complete! Model reloaded for inference."
def ensure_pipeline():
"""
If no pipeline yet, load the original model from wuhp/myr1 for inference.
(In 8-bit or normal float? We can do normal float here for a simpler approach.)
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True,
load_in_8bit=True, # load in 8-bit also for inference
device_map="auto"
)
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
return TEXT_PIPELINE
@spaces.GPU(duration=120) # up to 120s for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Generates text from either the finetuned pipeline (if it exists) or the base model.
Allows user to adjust temperature, top_p, min/max tokens.
"""
pipe = ensure_pipeline()
out = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return out[0]["generated_text"]
# Build Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## ZeroGPU: Mini-Finetune with 8-bit + Extended Generation")
finetune_btn = gr.Button("Finetune on 50 lines of WikiText-2 (up to 10 min)")
status_box = gr.Textbox(label="Finetune Status")
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("After finetuning, or even without it, generate text below:")
prompt_in = gr.Textbox(lines=3, label="Prompt")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Generated Text", lines=12)
gen_btn = gr.Button("Generate")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
demo.launch()