File size: 9,537 Bytes
5755412 4cf237b 13b1681 f82c314 13b1681 f82c314 eccd8f6 13b1681 1ce8e5a 13b1681 4e66e3d 13b1681 4e66e3d 1ce8e5a 4cf237b d93eea9 13b1681 b446d41 13b1681 f82c314 b26485f 13b1681 b26485f 4cf237b 13b1681 f82c314 13b1681 1ce8e5a 13b1681 1ce8e5a 13b1681 b26485f 13b1681 b26485f 13b1681 b26485f 13b1681 5755412 eccd8f6 13b1681 eccd8f6 f82c314 13b1681 1ce8e5a 13b1681 1ce8e5a 13b1681 4e66e3d f82c314 4e66e3d f82c314 13b1681 f82c314 4e66e3d f82c314 13b1681 f82c314 1ce8e5a f82c314 13b1681 f82c314 13b1681 f82c314 4cf237b f82c314 13b1681 f82c314 1ce8e5a 13b1681 f82c314 1ce8e5a 13b1681 f82c314 13b1681 1ce8e5a 13b1681 f82c314 13b1681 eccd8f6 b26485f 13b1681 b26485f f82c314 13b1681 f82c314 13b1681 4cf237b 13b1681 4cf237b 13b1681 f82c314 b446d41 d93eea9 13b1681 4e66e3d b26485f 13b1681 b26485f 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d eccd8f6 d93eea9 4e66e3d b446d41 13b1681 d93eea9 b26485f 13b1681 4e66e3d f82c314 d93eea9 4e66e3d 4cf237b 4e66e3d f82c314 d93eea9 f82c314 4e66e3d f82c314 eccd8f6 d93eea9 5755412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline,
BitsAndBytesConfig, # for 4-bit config
)
# PEFT (LoRA / QLoRA)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
##############################################################################
# ZeroGPU + QLoRA Example
##############################################################################
TEXT_PIPELINE = None
COMPARISON_PIPELINE = None # We'll keep a separate pipeline for the DeepSeek model
NUM_EXAMPLES = 50 # We'll train on 50 lines of WikiText-2 for demonstration
@spaces.GPU(duration=600) # up to 10 min
def finetune_small_subset():
"""
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
2) Adds LoRA adapters (trainable),
3) Trains on 50 lines of WikiText-2,
4) Saves LoRA adapter to 'finetuned_myr1',
5) Reloads LoRA adapters for inference in a pipeline.
"""
# --- 1) Load WikiText-2 subset ---
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
# --- 2) Setup 4-bit quantization with BitsAndBytes ---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16 if you prefer
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config, # <--- QLoRA 4-bit
device_map="auto",
trust_remote_code=True
)
# Prepare the model for k-bit training (QLoRA)
base_model = prepare_model_for_kbit_training(base_model)
# --- 3) Create LoRA config & wrap the base model in LoRA ---
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
)
lora_model = get_peft_model(base_model, lora_config)
# --- 4) Tokenize dataset ---
def tokenize_fn(ex):
return tokenizer(ex["text"], truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Training args
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=5,
save_steps=999999,
save_total_limit=1,
fp16=False, # rely on bfloat16 from quantization
)
# Trainer
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
# --- 5) Train ---
trainer.train()
# --- 6) Save LoRA adapter + tokenizer ---
trainer.model.save_pretrained("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
# --- 7) Reload the base model + LoRA adapter for inference
base_model_2 = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
base_model_2 = prepare_model_for_kbit_training(base_model_2)
# Instead of load_adapter(...), we use PeftModel.from_pretrained
lora_model_2 = PeftModel.from_pretrained(
base_model_2,
"finetuned_myr1",
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
return "Finetuning complete (QLoRA + LoRA). Model loaded for inference."
def ensure_pipeline():
"""
If we haven't finetuned yet (TEXT_PIPELINE is None),
load the base model in 4-bit with NO LoRA.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
return TEXT_PIPELINE
def ensure_comparison_pipeline():
"""
Load the DeepSeek model pipeline if not already loaded.
Adjust config if you'd like to load in 4-bit, or just do standard fp16/bfloat16.
"""
global COMPARISON_PIPELINE
if COMPARISON_PIPELINE is None:
# Example: standard load (no QLoRA).
# If you want 4-bit, you can set up BitsAndBytesConfig here similarly.
config = AutoConfig.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Llama-8B")
# If you want to use device_map="auto" for GPU usage:
# In many cases you might want to do:
# device_map="auto" or device_map=0 for single-GPU.
# For demonstration, let's keep it simple.
# If your environment supports accelerate, you can do device_map="auto".
model = AutoModelForCausalLM.from_pretrained(
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
config=config,
device_map="auto"
)
COMPARISON_PIPELINE = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
return COMPARISON_PIPELINE
@spaces.GPU(duration=120) # up to 2 min for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Generates text from the finetuned (LoRA) model if present, else the base model.
"""
pipe = ensure_pipeline()
out = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return out[0]["generated_text"]
@spaces.GPU(duration=120)
def compare_models(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Generates text side-by-side from the local myr1 pipeline (fine-tuned or base)
AND from the DeepSeek model.
Returns two strings.
"""
# Ensure both pipelines are loaded:
local_pipe = ensure_pipeline()
comp_pipe = ensure_comparison_pipeline()
local_out = local_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
local_text = local_out[0]["generated_text"]
comp_out = comp_pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
comp_text = comp_out[0]["generated_text"]
return local_text, comp_text
# Build Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1")
gr.Markdown("Finetune or skip to use the base model. Then compare results with the DeepSeek model.")
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on 50 lines of WikiText-2 (up to 10 min)")
status_box = gr.Textbox(label="Finetune Status")
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("### Generate with myr1 (fine-tuned if done above, else base)")
prompt_in = gr.Textbox(lines=3, label="Prompt")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="myr1 Model Output", lines=12)
gen_btn = gr.Button("Generate with myr1")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
gr.Markdown("### Compare myr1 vs DeepSeek-R1-Distill-Llama-8B side-by-side")
compare_btn = gr.Button("Compare (Side-by-side)")
out_local = gr.Textbox(label="myr1 Output", lines=10)
out_deepseek = gr.Textbox(label="DeepSeek Output", lines=10)
compare_btn.click(
fn=compare_models,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=[out_local, out_deepseek]
)
demo.launch()
|