File size: 7,812 Bytes
5755412 4cf237b 13b1681 f82c314 13b1681 4fa9540 f82c314 eccd8f6 13b1681 1ce8e5a 13b1681 4e66e3d 13b1681 4e66e3d 1ce8e5a 4cf237b 4fa9540 b446d41 13b1681 f82c314 b26485f 13b1681 4fa9540 13b1681 b26485f 4cf237b 4fa9540 f82c314 13b1681 1ce8e5a 13b1681 1ce8e5a 13b1681 b26485f 13b1681 b26485f 13b1681 b26485f 13b1681 5755412 eccd8f6 13b1681 eccd8f6 f82c314 13b1681 1ce8e5a 13b1681 1ce8e5a 13b1681 4e66e3d 4fa9540 4e66e3d 4fa9540 f82c314 4e66e3d f82c314 13b1681 f82c314 4e66e3d f82c314 13b1681 f82c314 1ce8e5a f82c314 13b1681 f82c314 13b1681 f82c314 4cf237b f82c314 13b1681 f82c314 1ce8e5a 13b1681 f82c314 1ce8e5a 13b1681 f82c314 13b1681 1ce8e5a 13b1681 f82c314 13b1681 4fa9540 eccd8f6 b26485f 13b1681 b26485f f82c314 13b1681 f82c314 13b1681 4cf237b 13b1681 4cf237b 13b1681 f82c314 b446d41 13b1681 4e66e3d b26485f 13b1681 b26485f 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d eccd8f6 4fa9540 d93eea9 b446d41 4fa9540 b26485f 4fa9540 4e66e3d f82c314 d93eea9 4e66e3d 4cf237b 4fa9540 f82c314 4fa9540 f82c314 4e66e3d f82c314 eccd8f6 5755412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline,
BitsAndBytesConfig,
)
# PEFT (LoRA / QLoRA)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel
##############################################################################
# ZeroGPU + QLoRA Example
##############################################################################
TEXT_PIPELINE = None
COMPARISON_PIPELINE = None # pipeline for the comparison model, if desired
NUM_EXAMPLES = 50 # We'll train on 50 lines (or rows) for demonstration
@spaces.GPU(duration=600) # up to 10 min
def finetune_small_subset():
"""
1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
2) Adds LoRA adapters (trainable),
3) Trains on a small subset of Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B,
4) Saves LoRA adapter to 'finetuned_myr1',
5) Reloads LoRA adapters for inference in a pipeline.
"""
# --- 1) Load Magpie dataset ---
# You can load 'train' or 'validation' split depending on your preference
ds = load_dataset(
"Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B",
split="train"
)
# EXAMPLE: Filter for a single conversation_id
# (Alternatively, just do ds.select(range(...)) for a small random subset.)
# We'll demonstrate filtering for the first conversation_id:
unique_ids = list(set(ds["conversation_id"]))
single_id = unique_ids[0]
ds = ds.filter(lambda x: x["conversation_id"] == single_id)
# After filtering, still pick just up to NUM_EXAMPLES
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
# --- 2) Setup 4-bit quantization with BitsAndBytes ---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16, # or torch.float16 if you prefer
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config, # <--- QLoRA 4-bit
device_map="auto",
trust_remote_code=True
)
# Prepare the model for k-bit training (QLoRA)
base_model = prepare_model_for_kbit_training(base_model)
# --- 3) Create LoRA config & wrap the base model in LoRA ---
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules=["q_proj", "v_proj"],
task_type=TaskType.CAUSAL_LM,
)
lora_model = get_peft_model(base_model, lora_config)
# --- 4) Tokenize dataset ---
def tokenize_fn(ex):
"""
Example: combine instruction + response
into a single text. Adjust to your liking.
"""
# For demonstration, let's do a short prompt style:
text = (
f"Instruction: {ex['instruction']}\n\n"
f"Response: {ex['response']}"
)
return tokenizer(text, truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Training args
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=5,
save_steps=999999,
save_total_limit=1,
fp16=False, # rely on bfloat16 from quantization
)
# Trainer
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=ds,
data_collator=collator,
)
# --- 5) Train ---
trainer.train()
# --- 6) Save LoRA adapter + tokenizer ---
trainer.model.save_pretrained("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
# --- 7) Reload the base model + LoRA adapter for inference
base_model_2 = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
base_model_2 = prepare_model_for_kbit_training(base_model_2)
lora_model_2 = PeftModel.from_pretrained(
base_model_2,
"finetuned_myr1",
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)
return "Finetuning complete (QLoRA + LoRA on Magpie dataset). Model loaded for inference."
def ensure_pipeline():
"""
If we haven't finetuned yet (TEXT_PIPELINE is None),
load the base model in 4-bit with NO LoRA.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
base_model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True
)
TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
return TEXT_PIPELINE
@spaces.GPU(duration=120) # up to 2 min for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Generates text from the finetuned (LoRA) model if present, else the base model.
"""
pipe = ensure_pipeline()
out = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return out[0]["generated_text"]
# (Optional) If you want to compare with another model, define it here:
# def ensure_comparison_pipeline():
# ...
with gr.Blocks() as demo:
gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1 (Magpie dataset subset)")
gr.Markdown("Finetune or skip to use the base model. Then generate text below.")
finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on small subset of Magpie dataset (up to 10 min)")
status_box = gr.Textbox(label="Finetune Status")
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("### Generate with myr1 (fine-tuned if done above, else base)")
prompt_in = gr.Textbox(lines=3, label="Prompt")
temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
min_tokens = gr.Slider(50, 1024, value=50, step=10, label="Min New Tokens")
max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Generated Text", lines=12)
gen_btn = gr.Button("Generate")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
demo.launch()
|