File size: 7,812 Bytes
5755412
 
4cf237b
13b1681
 
f82c314
 
 
 
 
 
 
13b1681
4fa9540
f82c314
eccd8f6
13b1681
1ce8e5a
13b1681
4e66e3d
13b1681
4e66e3d
1ce8e5a
4cf237b
4fa9540
 
b446d41
13b1681
f82c314
b26485f
13b1681
 
4fa9540
13b1681
 
b26485f
4cf237b
4fa9540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f82c314
 
13b1681
 
 
1ce8e5a
13b1681
1ce8e5a
13b1681
 
b26485f
13b1681
b26485f
 
 
 
13b1681
b26485f
 
 
13b1681
 
5755412
 
eccd8f6
13b1681
 
eccd8f6
 
f82c314
13b1681
 
 
1ce8e5a
13b1681
 
 
 
 
1ce8e5a
13b1681
 
 
 
 
4e66e3d
4fa9540
 
 
 
 
 
 
 
 
 
4e66e3d
4fa9540
f82c314
 
4e66e3d
f82c314
13b1681
f82c314
 
4e66e3d
f82c314
 
13b1681
 
f82c314
1ce8e5a
f82c314
 
13b1681
f82c314
13b1681
f82c314
 
4cf237b
f82c314
 
13b1681
f82c314
 
1ce8e5a
13b1681
f82c314
 
1ce8e5a
13b1681
 
 
 
 
f82c314
 
 
13b1681
 
1ce8e5a
 
 
 
13b1681
f82c314
13b1681
 
4fa9540
eccd8f6
b26485f
 
13b1681
 
b26485f
f82c314
 
13b1681
 
 
 
 
f82c314
13b1681
 
 
4cf237b
 
13b1681
 
 
 
4cf237b
13b1681
f82c314
b446d41
13b1681
4e66e3d
b26485f
13b1681
b26485f
4e66e3d
 
f82c314
4e66e3d
 
f82c314
 
4e66e3d
f82c314
4e66e3d
eccd8f6
4fa9540
 
 
d93eea9
b446d41
4fa9540
 
b26485f
4fa9540
4e66e3d
 
f82c314
d93eea9
4e66e3d
 
4cf237b
 
4fa9540
 
f82c314
4fa9540
 
f82c314
 
 
4e66e3d
f82c314
 
eccd8f6
5755412
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import gradio as gr
import spaces
import torch

from datasets import load_dataset
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    DataCollatorForLanguageModeling,
    Trainer,
    TrainingArguments,
    pipeline,
    BitsAndBytesConfig,
)

# PEFT (LoRA / QLoRA)
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, PeftModel

##############################################################################
# ZeroGPU + QLoRA Example
##############################################################################

TEXT_PIPELINE = None
COMPARISON_PIPELINE = None  # pipeline for the comparison model, if desired
NUM_EXAMPLES = 50  # We'll train on 50 lines (or rows) for demonstration

@spaces.GPU(duration=600)  # up to 10 min
def finetune_small_subset():
    """
    1) Loads 'wuhp/myr1' in 4-bit quantization (QLoRA style),
    2) Adds LoRA adapters (trainable),
    3) Trains on a small subset of Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B,
    4) Saves LoRA adapter to 'finetuned_myr1',
    5) Reloads LoRA adapters for inference in a pipeline.
    """

    # --- 1) Load Magpie dataset ---
    # You can load 'train' or 'validation' split depending on your preference
    ds = load_dataset(
        "Magpie-Align/Magpie-Reasoning-V2-250K-CoT-Deepseek-R1-Llama-70B", 
        split="train"
    )

    # EXAMPLE: Filter for a single conversation_id
    # (Alternatively, just do ds.select(range(...)) for a small random subset.)
    # We'll demonstrate filtering for the first conversation_id:
    unique_ids = list(set(ds["conversation_id"]))
    single_id = unique_ids[0]
    ds = ds.filter(lambda x: x["conversation_id"] == single_id)

    # After filtering, still pick just up to NUM_EXAMPLES
    ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))

    # --- 2) Setup 4-bit quantization with BitsAndBytes ---
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_compute_dtype=torch.bfloat16,  # or torch.float16 if you prefer
        bnb_4bit_use_double_quant=True,
        bnb_4bit_quant_type="nf4",
    )

    config = AutoConfig.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(
        "wuhp/myr1", 
        subfolder="myr1",
        trust_remote_code=True
    )

    base_model = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,   # <--- QLoRA 4-bit
        device_map="auto",
        trust_remote_code=True
    )

    # Prepare the model for k-bit training (QLoRA)
    base_model = prepare_model_for_kbit_training(base_model)

    # --- 3) Create LoRA config & wrap the base model in LoRA ---
    lora_config = LoraConfig(
        r=16,
        lora_alpha=32,
        lora_dropout=0.05,
        bias="none",
        target_modules=["q_proj", "v_proj"],
        task_type=TaskType.CAUSAL_LM,
    )
    lora_model = get_peft_model(base_model, lora_config)

    # --- 4) Tokenize dataset ---
    def tokenize_fn(ex):
        """
        Example: combine instruction + response
        into a single text. Adjust to your liking.
        """
        # For demonstration, let's do a short prompt style:
        text = (
            f"Instruction: {ex['instruction']}\n\n"
            f"Response: {ex['response']}"
        )
        return tokenizer(text, truncation=True, max_length=512)

    ds = ds.map(tokenize_fn, batched=False, remove_columns=ds.column_names)
    ds.set_format("torch")

    collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)

    # Training args
    training_args = TrainingArguments(
        output_dir="finetuned_myr1",
        num_train_epochs=1,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=2,
        logging_steps=5,
        save_steps=999999,
        save_total_limit=1,
        fp16=False,  # rely on bfloat16 from quantization
    )

    # Trainer
    trainer = Trainer(
        model=lora_model,
        args=training_args,
        train_dataset=ds,
        data_collator=collator,
    )

    # --- 5) Train ---
    trainer.train()

    # --- 6) Save LoRA adapter + tokenizer ---
    trainer.model.save_pretrained("finetuned_myr1")
    tokenizer.save_pretrained("finetuned_myr1")

    # --- 7) Reload the base model + LoRA adapter for inference
    base_model_2 = AutoModelForCausalLM.from_pretrained(
        "wuhp/myr1",
        subfolder="myr1",
        config=config,
        quantization_config=bnb_config,
        device_map="auto",
        trust_remote_code=True
    )
    base_model_2 = prepare_model_for_kbit_training(base_model_2)

    lora_model_2 = PeftModel.from_pretrained(
        base_model_2,
        "finetuned_myr1",
    )

    global TEXT_PIPELINE
    TEXT_PIPELINE = pipeline("text-generation", model=lora_model_2, tokenizer=tokenizer)

    return "Finetuning complete (QLoRA + LoRA on Magpie dataset). Model loaded for inference."

def ensure_pipeline():
    """
    If we haven't finetuned yet (TEXT_PIPELINE is None),
    load the base model in 4-bit with NO LoRA.
    """
    global TEXT_PIPELINE
    if TEXT_PIPELINE is None:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
        config = AutoConfig.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
        base_model = AutoModelForCausalLM.from_pretrained(
            "wuhp/myr1",
            subfolder="myr1",
            config=config,
            quantization_config=bnb_config,
            device_map="auto",
            trust_remote_code=True
        )
        TEXT_PIPELINE = pipeline("text-generation", model=base_model, tokenizer=tokenizer)
    return TEXT_PIPELINE

@spaces.GPU(duration=120)  # up to 2 min for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
    """
    Generates text from the finetuned (LoRA) model if present, else the base model.
    """
    pipe = ensure_pipeline()
    out = pipe(
        prompt,
        temperature=float(temperature),
        top_p=float(top_p),
        min_new_tokens=int(min_new_tokens),
        max_new_tokens=int(max_new_tokens),
        do_sample=True
    )
    return out[0]["generated_text"]

# (Optional) If you want to compare with another model, define it here:
# def ensure_comparison_pipeline():
#     ...

with gr.Blocks() as demo:
    gr.Markdown("## ZeroGPU QLoRA Example for wuhp/myr1 (Magpie dataset subset)")
    gr.Markdown("Finetune or skip to use the base model. Then generate text below.")

    finetune_btn = gr.Button("Finetune 4-bit (QLoRA) on small subset of Magpie dataset (up to 10 min)")
    status_box = gr.Textbox(label="Finetune Status")
    finetune_btn.click(fn=finetune_small_subset, outputs=status_box)

    gr.Markdown("### Generate with myr1 (fine-tuned if done above, else base)")

    prompt_in = gr.Textbox(lines=3, label="Prompt")
    temperature = gr.Slider(0.0, 1.5, step=0.1, value=0.7, label="Temperature")
    top_p = gr.Slider(0.0, 1.0, step=0.05, value=0.9, label="Top-p")
    min_tokens = gr.Slider(50, 1024, value=50, step=10, label="Min New Tokens")
    max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens")

    output_box = gr.Textbox(label="Generated Text", lines=12)
    gen_btn = gr.Button("Generate")

    gen_btn.click(
        fn=predict,
        inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
        outputs=output_box
    )

demo.launch()