Update app.py
Browse files
app.py
CHANGED
@@ -1,125 +1,34 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
import ast
|
4 |
-
|
5 |
import gradio as gr
|
6 |
-
import
|
7 |
-
import
|
8 |
-
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
#
|
15 |
-
#
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
print("No extra script content found in 'MY_SCRIPT_CONTENT'.")
|
29 |
-
|
30 |
-
# ------------------------------------------------------------------------------
|
31 |
-
# 2) Model References for "myr1" from Hugging Face
|
32 |
-
# Make sure your HF repo is "wuhp/myr1" and your actual model files are in subfolder "myr1"
|
33 |
-
# ------------------------------------------------------------------------------
|
34 |
-
MODEL_REPO = "wuhp/myr1" # The HF repository name
|
35 |
-
SUBFOLDER = "myr1" # The folder inside the repo containing config.json etc.
|
36 |
-
|
37 |
-
# ------------------------------------------------------------------------------
|
38 |
-
# 3) Load Tokenizer & Model
|
39 |
-
# trust_remote_code=True to allow custom config/modeling if you have them in the repo.
|
40 |
-
# ------------------------------------------------------------------------------
|
41 |
-
print("Loading tokenizer...")
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
43 |
-
MODEL_REPO,
|
44 |
-
subfolder=SUBFOLDER,
|
45 |
-
trust_remote_code=True
|
46 |
)
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
MODEL_REPO,
|
51 |
-
subfolder=SUBFOLDER,
|
52 |
-
trust_remote_code=True,
|
53 |
-
device_map="auto", # auto-shard across GPU(s) if needed, else CPU fallback
|
54 |
-
torch_dtype=torch.float16, # or torch.float32, torch.bfloat16, etc.
|
55 |
-
low_cpu_mem_usage=True
|
56 |
-
)
|
57 |
-
model.eval()
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# 4) Define Generation Function for Gradio
|
63 |
-
# ------------------------------------------------------------------------------
|
64 |
-
def generate_text(prompt, max_new_tokens=64, temperature=0.7, top_p=0.9):
|
65 |
-
"""
|
66 |
-
Generate text using the myr1 model from Hugging Face.
|
67 |
-
"""
|
68 |
-
print("=== Starting generation ===")
|
69 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
70 |
-
|
71 |
-
try:
|
72 |
-
output_ids = model.generate(
|
73 |
-
**inputs,
|
74 |
-
max_new_tokens=max_new_tokens, # limit how many tokens beyond the prompt
|
75 |
-
temperature=temperature,
|
76 |
-
top_p=top_p,
|
77 |
-
do_sample=True,
|
78 |
-
pad_token_id=tokenizer.eos_token_id
|
79 |
-
)
|
80 |
-
print("=== Generation complete ===")
|
81 |
-
except Exception as e:
|
82 |
-
print(f"Error during generation: {e}")
|
83 |
-
return str(e)
|
84 |
-
|
85 |
-
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
86 |
-
|
87 |
-
|
88 |
-
# ------------------------------------------------------------------------------
|
89 |
-
# 5) Build a Gradio UI
|
90 |
-
# ------------------------------------------------------------------------------
|
91 |
-
demo = gr.Interface(
|
92 |
-
fn=generate_text,
|
93 |
-
inputs=[
|
94 |
-
gr.Textbox(
|
95 |
-
lines=4,
|
96 |
-
label="Prompt",
|
97 |
-
placeholder="Ask a question or start a story..."
|
98 |
-
),
|
99 |
-
gr.Slider(
|
100 |
-
minimum=8, maximum=512, step=1, value=64,
|
101 |
-
label="Max New Tokens"
|
102 |
-
),
|
103 |
-
gr.Slider(
|
104 |
-
minimum=0.0, maximum=1.5, step=0.1, value=0.7,
|
105 |
-
label="Temperature"
|
106 |
-
),
|
107 |
-
gr.Slider(
|
108 |
-
minimum=0.0, maximum=1.0, step=0.05, value=0.9,
|
109 |
-
label="Top-p (nucleus sampling)"
|
110 |
-
),
|
111 |
-
],
|
112 |
-
outputs="text",
|
113 |
-
title="DeepSeek myr1 Demo",
|
114 |
-
description=(
|
115 |
-
"Generates text with the 'myr1' model from the Hugging Face Hub. "
|
116 |
-
"Enter a prompt and adjust generation settings."
|
117 |
-
)
|
118 |
-
)
|
119 |
|
120 |
-
# ------------------------------------------------------------------------------
|
121 |
-
# 6) Launch the App
|
122 |
-
# ------------------------------------------------------------------------------
|
123 |
if __name__ == "__main__":
|
124 |
-
print("Launching Gradio demo...")
|
125 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import transformers_gradio
|
4 |
+
|
5 |
+
# Load *only* your model's interface.
|
6 |
+
#
|
7 |
+
# The original snippet loaded three models:
|
8 |
+
# demo = gr.load(name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", src=transformers_gradio.registry)
|
9 |
+
# demo = gr.load(name="deepseek-ai/DeepSeek-R1", src=transformers_gradio.registry)
|
10 |
+
# demo = gr.load(name="deepseek-ai/DeepSeek-R1-Zero", src=transformers_gradio.registry)
|
11 |
+
#
|
12 |
+
# But we want the same UI, using *your* model from Hugging Face. So we do a single gr.load(...) call:
|
13 |
+
#
|
14 |
+
# IMPORTANT:
|
15 |
+
# 1) "name" should be the exact repository you want to load.
|
16 |
+
# 2) If your UI code was stored as a "Space" with a 'app.py' or 'api' in your "wuhp/myr1" repo,
|
17 |
+
# this approach should pull that same Gradio interface.
|
18 |
+
# 3) If "transformers_gradio.registry" is correct for your space, keep it.
|
19 |
+
# Otherwise, you might need "src='spaces'" or a different source, depending on how your space is set up.
|
20 |
+
|
21 |
+
demo = gr.load(
|
22 |
+
name="wuhp/myr1",
|
23 |
+
src="transformers_gradio.registry"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
)
|
25 |
|
26 |
+
# If you want GPU usage (like the original snippet):
|
27 |
+
demo.fn = spaces.GPU()(demo.fn)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Remove API names (like the original snippet):
|
30 |
+
for fn in demo.fns.values():
|
31 |
+
fn.api_name = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
|
|
|
|
|
|
33 |
if __name__ == "__main__":
|
|
|
34 |
demo.launch()
|