wuhp commited on
Commit
9c07ccc
·
verified ·
1 Parent(s): b9b49f6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -118
app.py CHANGED
@@ -1,125 +1,34 @@
1
- import os
2
- import sys
3
- import ast
4
-
5
  import gradio as gr
6
- import torch
7
- import streamlit as st
8
- # No "spaces" or "transformers_gradio" imports here, since you said you want to use *your model* (myr1),
9
- # not external Spaces demos.
10
-
11
- from transformers import AutoTokenizer, AutoModelForCausalLM
12
-
13
- # ------------------------------------------------------------------------------
14
- # 1) OPTIONAL: Environment Variable Code (MY_SCRIPT_CONTENT)
15
- # If you don't need this dynamic script execution, remove the entire block.
16
- # ------------------------------------------------------------------------------
17
- script_repr = os.getenv("MY_SCRIPT_CONTENT")
18
-
19
- if script_repr:
20
- # Attempt to parse & exec the script from environment variable
21
- try:
22
- script_content = ast.literal_eval(script_repr)
23
- exec(script_content)
24
- except (ValueError, SyntaxError) as e:
25
- # Using Streamlit to display an error message in case this is run within a Streamlit environment
26
- st.error(f"Error evaluating script from environment variable: {e}")
27
- else:
28
- print("No extra script content found in 'MY_SCRIPT_CONTENT'.")
29
-
30
- # ------------------------------------------------------------------------------
31
- # 2) Model References for "myr1" from Hugging Face
32
- # Make sure your HF repo is "wuhp/myr1" and your actual model files are in subfolder "myr1"
33
- # ------------------------------------------------------------------------------
34
- MODEL_REPO = "wuhp/myr1" # The HF repository name
35
- SUBFOLDER = "myr1" # The folder inside the repo containing config.json etc.
36
-
37
- # ------------------------------------------------------------------------------
38
- # 3) Load Tokenizer & Model
39
- # trust_remote_code=True to allow custom config/modeling if you have them in the repo.
40
- # ------------------------------------------------------------------------------
41
- print("Loading tokenizer...")
42
- tokenizer = AutoTokenizer.from_pretrained(
43
- MODEL_REPO,
44
- subfolder=SUBFOLDER,
45
- trust_remote_code=True
46
  )
47
 
48
- print("Loading model...")
49
- model = AutoModelForCausalLM.from_pretrained(
50
- MODEL_REPO,
51
- subfolder=SUBFOLDER,
52
- trust_remote_code=True,
53
- device_map="auto", # auto-shard across GPU(s) if needed, else CPU fallback
54
- torch_dtype=torch.float16, # or torch.float32, torch.bfloat16, etc.
55
- low_cpu_mem_usage=True
56
- )
57
- model.eval()
58
 
59
- print("Model loaded successfully.")
60
-
61
- # ------------------------------------------------------------------------------
62
- # 4) Define Generation Function for Gradio
63
- # ------------------------------------------------------------------------------
64
- def generate_text(prompt, max_new_tokens=64, temperature=0.7, top_p=0.9):
65
- """
66
- Generate text using the myr1 model from Hugging Face.
67
- """
68
- print("=== Starting generation ===")
69
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
70
-
71
- try:
72
- output_ids = model.generate(
73
- **inputs,
74
- max_new_tokens=max_new_tokens, # limit how many tokens beyond the prompt
75
- temperature=temperature,
76
- top_p=top_p,
77
- do_sample=True,
78
- pad_token_id=tokenizer.eos_token_id
79
- )
80
- print("=== Generation complete ===")
81
- except Exception as e:
82
- print(f"Error during generation: {e}")
83
- return str(e)
84
-
85
- return tokenizer.decode(output_ids[0], skip_special_tokens=True)
86
-
87
-
88
- # ------------------------------------------------------------------------------
89
- # 5) Build a Gradio UI
90
- # ------------------------------------------------------------------------------
91
- demo = gr.Interface(
92
- fn=generate_text,
93
- inputs=[
94
- gr.Textbox(
95
- lines=4,
96
- label="Prompt",
97
- placeholder="Ask a question or start a story..."
98
- ),
99
- gr.Slider(
100
- minimum=8, maximum=512, step=1, value=64,
101
- label="Max New Tokens"
102
- ),
103
- gr.Slider(
104
- minimum=0.0, maximum=1.5, step=0.1, value=0.7,
105
- label="Temperature"
106
- ),
107
- gr.Slider(
108
- minimum=0.0, maximum=1.0, step=0.05, value=0.9,
109
- label="Top-p (nucleus sampling)"
110
- ),
111
- ],
112
- outputs="text",
113
- title="DeepSeek myr1 Demo",
114
- description=(
115
- "Generates text with the 'myr1' model from the Hugging Face Hub. "
116
- "Enter a prompt and adjust generation settings."
117
- )
118
- )
119
 
120
- # ------------------------------------------------------------------------------
121
- # 6) Launch the App
122
- # ------------------------------------------------------------------------------
123
  if __name__ == "__main__":
124
- print("Launching Gradio demo...")
125
  demo.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ import spaces
3
+ import transformers_gradio
4
+
5
+ # Load *only* your model's interface.
6
+ #
7
+ # The original snippet loaded three models:
8
+ # demo = gr.load(name="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B", src=transformers_gradio.registry)
9
+ # demo = gr.load(name="deepseek-ai/DeepSeek-R1", src=transformers_gradio.registry)
10
+ # demo = gr.load(name="deepseek-ai/DeepSeek-R1-Zero", src=transformers_gradio.registry)
11
+ #
12
+ # But we want the same UI, using *your* model from Hugging Face. So we do a single gr.load(...) call:
13
+ #
14
+ # IMPORTANT:
15
+ # 1) "name" should be the exact repository you want to load.
16
+ # 2) If your UI code was stored as a "Space" with a 'app.py' or 'api' in your "wuhp/myr1" repo,
17
+ # this approach should pull that same Gradio interface.
18
+ # 3) If "transformers_gradio.registry" is correct for your space, keep it.
19
+ # Otherwise, you might need "src='spaces'" or a different source, depending on how your space is set up.
20
+
21
+ demo = gr.load(
22
+ name="wuhp/myr1",
23
+ src="transformers_gradio.registry"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  )
25
 
26
+ # If you want GPU usage (like the original snippet):
27
+ demo.fn = spaces.GPU()(demo.fn)
 
 
 
 
 
 
 
 
28
 
29
+ # Remove API names (like the original snippet):
30
+ for fn in demo.fns.values():
31
+ fn.api_name = False
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
 
 
 
33
  if __name__ == "__main__":
 
34
  demo.launch()